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In this age of viruses and hackers, of electronic eavesdropping and electronic fraud, security is paramount.

As the disciplines of cryptography and network security have matured, more practical, readily available
applications to enforce network security have developed. This text provides a practical survey of both the
principles and practice of cryptography and network security. First, the basic issues to be addressed by a
network security capability are explored through a tutorial and survey of cryptography and network security
technology. Then, the practice of network security is explored via practical applications that have been
implemented and are in use today.
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[Page xi]

Notation

Even the natives have difficulty mastering this peculiar vocabulary.

The Golden Bough, Sir James George Frazer

Symbol Expression Meaning

D, K DK, Y) Symmetric decryption of ciphertext Y using secret key K.

D, PRa D(PRa, Y) Asymmetric decryption of ciphertext Y using A's private keyPRa
D,PUa D(PUa, Y) Asymmetric decryption of ciphertext Y using A's public keyPUa
E, K E(K, X) Symmetric encryption of plaintext X using secret keyK.

E,PRa E(PRa, X) Asymmetric encryption of plaintext X using A's private keyPRa
E, PUa E(PUa, X) Asymmetric encryption of plaintext X using A's public keyPUa

K Secret key

PRa Private key of user A

PUa Public key of user A

C,K CK, X Message authentication code of messageX using secret key K.
GF(p) The finite field of order p, where p is prime. The field is defined as the

set Zp together with the arithmetic operations modulop.

GF2" The finite field of order 2".
Zn Set of nonnegative integers less thann
gcd gcd(, j) Greatest common divisor; the largest positive integer that divides bothi

and j with no remainder on division.

mod amodm Remainder after division of a by m.

mod, - aE b(mod m) amodm =bmodm

mod, $ a $ b(mod m) amodm ¢ b modm

dlog dloga,p(b) Discrete logarithm of the numberb for the basea (mod p)

f f(n) The number of positive integers less than n and relatively prime ton.

This is Euler's totient function.

al+az+..+an

n
a

=1




Symbol

Expression

Meaning

alxazx...xan

il

i divides j, which means that there is no remainder whenj is divided byi

Absolute value of a

la
X|ly X concatenated withy
- i i
o — y X is approximately equal toy

Exclusive-OR of x andy for single-bit variables; Bitwise exclusive-OR
of x andy for multiple-bit variables

L]

The largest integer less than or equal tox

XES

The elementx is contained in the set S.

IEEEEE

A (1,82, ....8K)

The integer A corresponds to the sequence of integers @1,a2, ...,ak)

MNEXT B
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[Page xiii]

Preface

"The tie, if | might suggest it, sir, a shade more tightly knotted. One aims at the perfect butterfly effect. If you will
permit me"

"What does it matter, Jeeves, at a time like this? Do you realize that Mr. Little's domestic happiness is hanging in
the scale?"

"There is no time, sir, at which ties do not matter."

Very Good, Jeeves!P. G. Wodehouse

In this age of universal electronic connectivity, of viruses and hackers, of electronic eavesdropping and electronic fraud, there is indeed
no time at which security does not matter. Two trends have come together to make the topic of this book of vital interest. First, the
explosive growth in computer systems and their interconnections via networks has increased the dependence of both organizations and
individuals on the information stored and communicated using these systems. This, in turn, has led to a heightened awareness of the
need to protect data and resources from disclosure, to guarantee the authenticity of data and messages, and to protect systems from
network-based attacks. Second, the disciplines of cryptography and network security have matured, leading to the development of
practical, readily available applications to enforce network security.
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[Page xiii (continued)]

Objectives

It is the purpose of this book to provide a practical survey of both the principles and practice of cryptography and network security. In the
first two parts of the book, the basic issues to be addressed by a network security capability are explored by providing a tutorial and
survey of cryptography and network security technology. The latter part of the book deals with the practice of network security: practical
applications that have been implemented and are in use to provide network security.

The subject, and therefore this book, draws on a variety of disciplines. In particular, it is impossible to appreciate the significance of
some of the techniques discussed in this book without a basic understanding of number theory and some results from probability theory.
Nevertheless, an attempt has been made to make the book self-contained. The book presents not only the basic mathematical results
that are needed but provides the reader with an intuitive understanding of those results. Such background material is introduced as
needed. This approach helps to motivate the material that is introduced, and the author considers this preferable to simply presenting all
of the mathematical material in a lump at the beginning of the book.
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[Page xiii (continued)]

Intended Audience

The book is intended for both an academic and a professional audience. As a textbook, it is intended as a one-semester undergraduate
course in cryptography and network security for computer science, computer engineering, and electrical engineering majors. It covers the
material in IAS2 Security Mechanisms, a core area in the Information Technology body of knowledge; NET4 Security, another core area
in the Information Technology body of knowledge; and IT311, Cryptography, an advanced course; these subject areas are part of the
Draft ACM/IEEE Computer Society Computing Curricula 2005.

[Page xiv]

The book also serves as a basic reference volume and is suitable for self-study.
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[Page xiv (continued)]

Plan of the Book

The book is organized in four parts:

. Conventional Encryption: A detailed examination of conventional encryption algorithms and design
principles, including a discussion of the use of conventional encryption for confidentiality.

. Public-Key Encryption and Hash Functions:A detailed examination of public-key encryption
algorithms and design principles. This part also examines the use of message authentication codes and hash
functions, as well as digital signatures and public-key certificates.

. Network Security Practice: Covers important network security tools and applications, including
Kerberos, X.509v3 certificates, PGP, SIMIME, IP Security, SSL/TLS, and SET.

. System Security: Looks at system-level security issues, including the threat of and countermeasures
for intruders and viruses, and the use of firewalls and trusted systems.

In addition, the book includes an extensive glossary, a list of frequently used acronyms, and a bibliography. Each chapter includes
homework problems, review questions, a list of key words, suggestions for further reading, and recommended Web sites.

A more detailed, chapter-by-chapter summary of each part appears at the beginning of that part.

NEXT B
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[Page xiv (continued)]

Internet Services for Instructors and Students

There is a Web site for this book that provides support for students and instructors. The site includes links to other relevant sites,
transparency masters of figures and tables in the book in PDF (Adobe Acrobat) format, and PowerPoint slides. The Web page is at
WilliamStallings.com/Crypto/Crypto4e.html. As soon as typos or other errors are discovered, an errata list for this book will be available
at WilliamStallings.com. In addition, the Computer Science Student Resource site, at WilliamStallings.com/StudentSupport.html,
provides documents, information, and useful links for computer science students and professionals.
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[Page xiv (continued)]

Projects for Teaching Cryptography and Network Security

For many instructors, an important component of a cryptography or security course is a project or set of projects by which the student
gets hands-on experience to reinforce concepts from the text. This book provides an unparalleled degree of support for including a
projects component in the course. The instructor's manual not only includes guidance on how to assign and structure the projects, but
also includes a set of suggested projects that covers a broad range of topics from the text:

[Page xv]
® Research projects: A series of research assignments that instruct the student to research a particular topic on the Internet
and write a report

® Programming projects: A series of programming projects that cover a broad range of topics and that can be implemented in
any suitable language on any platform

® | ab exercises: A series of projects that involve programming and experimenting with concepts from the book
® Writing assignments: A set of suggested writing assignments, by chapter

® Reading/report assignments: A list of papers in the literature, one for each chapter, that can be assigned for the student to
read and then write a short report

See for details.
KI==3 NEXT B
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[Page xv (continued)]

What's New in the Fourth Edition

In the three years since the third edition of this book was published, the field has seen continued innovations and improvements. In this
new edition, | try to capture these changes while maintaining a broad and comprehensive coverage of the entire field. To begin this
process of revision, the third edition was extensively reviewed by a number of professors who teach the subject. In addition, a number of
professionals working in the field reviewed individual chapters. The result is that, in many places, the narrative has been clarified and
tightened, and illustrations have been improved. Also, a large number of new "field-tested" problems have been added.

Beyond these refinements to improve pedagogy and user friendliness, there have been major substantive changes throughout the book.
Highlights include the following:

® Simplified AES: This is an educational, simplified version of AES (Advanced Encryption Standard), which enables students
to grasp the essentials of AES more easily.

® \Whirlpool: This is an important new secure hash algorithm based on the use of a symmetric block cipher.

® CMAC: This is a new block cipher mode of operation. CMAC (cipher-based message authentication code) provides message
authentication based on the use of a symmetric block cipher.

® Public-key infrastructure (PKI): This important topic is treated in this new edition.
® Distributed denial of service (DDoS) attacks:DDoS attacks have assumed increasing significance in recent years.

® Common Criteria for Information Technology Security Evaluation: The Common Criteria have become the international
framework for expressing security requirements and evaluating products and implementations.

® Online appendices: Six appendices available at this book's Web site supplement the material in the text.

In addition, much of the other material in the book has been updated and revised.
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[Page xvi]
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[Page 1]

Chapter 0. Reader's Guide

b.l Outline of this Bookj

Subject Matte

b.3 Internet and Web Resources]

l/\leb Sites for This Bookj

Dther Web Siteg
lgSENET NewsgrougJ

[Page 2]

The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to

receive him; not on the chance of his not attacking, but rather on the fact that we have made our position
unassailable.

The Art of War, Sun Tzu

This book, with its accompanying Web site, covers a lot of material. Here we give the reader an overview.
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[Page 2 (continued)]

0.1. Qutline of this Book

Following an introductory chapter, the book is organized into four parts:

: Symmetric Ciphers: Provides a survey of symmetric encryption, including classical and modern
algorithms. The emphasis is on the two most important algorithms, the Data Encryption Standard (DES) and the
Advanced Encryption Standard (AES). This part also addresses message authentication and key management.

: Public-Key Encryption and Hash Functions: Provides a survey of public-key algorithms, including
RSA (Rivest-Shamir-Adelman) and elliptic curve. It also covers public-key applications, including digital signatures
and key exchange.

: Network Security Practice: Examines the use of cryptographic algorithms and security protocols to
provide security over networks and the Internet. Topics covered include user authentication, e-mail, IP security,
and Web security.

: System Security: Deals with security facilities designed to protect a computer system from security
threats, including intruders, viruses, and worms. This part also looks at firewall technology.

Many of the cryptographic algorithms and network security protocols and applications described in this book have been specified as
standards. The most important of these are Internet Standards, defined in Internet RFCs (Request for Comments), and Federal
Information Processing Standards (FIPS), issued by the National Institute of Standards and Technology (NIST). discusses
the standards-making process and lists the standards cited in this book.

NEXT B
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0.2. Roadmap

Subject Matter

[Page 2 (continued)]

The material in this book is organized into three broad categories:

Cryptology: This is the study of techniques for ensuring the secrecy and/or authenticity of information. The two
main branches of cryptology are cryptography, which is the study of the design of such techniques; and
cryptanalysis, which deals with the defeating such techniques, to recover information, or forging information that

will be accepted as authentic.

[Page 3]

Network security: This area covers the use of cryptographic algorithms in network protocols and network

applications.

Computer security: In this book, we use this term to refer to the security of computers against intruders (e.g.,
hackers) and malicious software (e.g., viruses). Typically, the computer to be secured is attached to a network and

the bulk of the threats arise fro

m the network.

The first two parts of the book deal with two distinct cryptographic approaches: symmetric cryptographic algorithms and public-key, or
asymmetric, cryptographic algorithms. Symmetric algorithms make use of a single shared key shared by two parties. Public-key
algorithms make use of two keys: a private key known only to one party, and a public key, available to other parties.

Topic Ordering

This book covers a lot of material. For the instructor or reader who wishes a shorter treatment, there are a number of opportunities.

To thoroughly cover the material in the first two parpters should be read in sequence. With the exception of the Advanced

Encryption Standard (AES), none of the material in

necessary to have some understanding of finite_field
numbers and modular arithmetic. Accordingly,
on AES. Thus, if Chapter § is skipped, it is safe to skip

Chapter 4 cove

Part Ong requires any special mathematical background. To understand AES, it is
0 turn, an understanding of finite fields requires a basic background in

prime
all of these mathematical preliminaries just prior to their use i

hapter 4 as well.

introduces some concepts that are useful in later chapters o. However, for the reader whose sole interest is

contemporary cryptography, this_.chapter can be quickly skimmg

and AES, which are covered in [Chapters

andf, respectively.|

ed, The fwo most important symmetric cryptographic algorithms are DES
covers two other interesting algorithms, both of which enjoy

commercial use. This chapter can be safely skipped if these algorithms are not of interest.

For , the only additi

The reader who has skipped [Chapters 4 and

The two most widely used general-purpose public-key algorithms are RSA
The reader may wish to skip the material on elliptic curve cryptography in

and CMAC are of lesser importance.

atical background that is needed is in the area of number th@y, which is covered i.

should first review the material onSections 4.1 through

iptic curve, with RSA enjoying much wider acceptance.
, at least on a first reading. InChapter 14, Whirlpool




lDart Threel andlDart Founl are relati independent of each other and can be read in either order. Both parts assume a basic
understanding of the material in Parts Ong and [Twd.
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[Page 4]

0.3. Internet and Web Resources

There are a number of resources available on the Internet and the Web to support this book and to help one keep up with
developments in this field.

Web Sites for This Book

A special Web page has been set up for this book at lNiIIiamStal|inqs.com/Crvpto/Crypto4e.html. The site includes the following:

® Useful Web sites: There are links to other relevant Web sites, organized by chapter, including the sites listed in this section
and throughout this book.

® rrata sheet: An errata list for this book will intaj dated as needed. Please e-mail any errors that you spot to
me. Errata sheets for my other books are at WilliamStallings.co

® Figures: All of the figures in this book in PDF (Adobe Acrobat) format.
® Tables: All of the tables in this book in PDF format.
® Sjides: A set of PowerPoint slides, organized by chapter.

® Cryptography and network security courses: There are links to home pages for courses based on this book; these pages
may be useful to other instructors in providing ideas about how to structure their course.

| also maintain the Computer Science Student Resource Site, atlNiIIiamStaIIinqs.com/StudentSupport.html. The purpose of this site
is to provide documents, information, and links for computer science students and professionals. Links and documents are organized
into four categories:

® \ath: Includes a basic math refresher, a gueuing analysis primer, a number system primer, and links to numerous math sites

® ow-to: Advice and guidance for solving homework problems, writing technical reports, and preparing technical presentations

Research resources: Links to important collections of papers, technical reports, and bibliographies

Miscellaneous: A variety of other useful documents and links

Other Web Sites

There are numerous Web sites that provide information related to the topics of this book. In subsequent chapters, pointers to specific
Web sites can be found in the Recommended Reading and Web Sites section. Because the addresses for Web sites tend to change
frequently, | have not included URLs in the book. For all of the Web sites listed in the book, the appropriate link can be found at this
book's Web site. Other links not mentioned in this book will be added to the Web site over time.


http://WilliamStallings.com/Crypto/Crypto4e.html
http://WilliamStallings.com
http://WilliamStallings.com/StudentSupport.html
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USENET Newsgroups

A number of USENET newsgroups are devoted to some aspect of cryptography or network security. As with virtually all USENET
groups, there is a high noise-to-signal ratio, but it is worth experimenting to see if any meet your needs. The most relevant are

® sci.crypt.research: The best group to follow. This is a moderated newsgroup that deals with research topics; postings must
have some relationship to the technical aspects of cryptology.

® sci.crypt: A general discussion of cryptology and related topics.

® sci.crypt.random-numbers: A discussion of cryptographic-strength random number generators.
° alt.security: A general discussion of security topics.

® comp.security.misc: A general discussion of computer security topics.

® comp.security.firewalls: A discussion of firewall products and technology.

° comp.security.announce: News, announcements from CERT.

® comp.risks: A discussion of risks to the public from computers and users.

® comp.virus: A moderated discussion of computer viruses.

e Py wEXT
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The combination of space, time, and strength that must be considered as the basic elements of this theory
of defense makes this a fairly complicated matter. Consequently, it is not easy to find a fixed point of departure.

On War, Carl Von Clausewitz

Key Points

® The OSI (open systems interconnection) security architecture provides a systematic framework for defining
security attacks, mechanisms, and services.

® kecurity attackdare classified as either passive attacks, which include unauthorized reading of a message

of file and traffic analysis; and active attacks, such as modification of messages or files, and denial of
service.

® A Isecurity mechanisnl is any process (or a device incorporating such a process) that is designed to
detect, prevent, or recover from a security attack. Examples of mechanisms are encryption algorithms,
digital signatures, and authentication protocols.

® include authentication, access control, data confidentiality, data integrity,

nonrepudiation, and availability.

The requirements of information security within an organization have undergone two major changes in the last several decades.
Before the widespread use of data processing equipment, the security of information felt to be valuable to an organization was provided
primarily by physical and administrative means. An example of the former is the use of rugged filing cabinets with a combination lock for
storing sensitive documents. An example of the latter is personnel screening procedures used during the hiring process.

With the introduction of the computer, the need for automated tools for protecting files and other information stored on the computer
became evident. This is especially the case for a shared system, such as a time-sharing system, and the need is even more acute for
systems that can be accessed over a public telephone network, data network, or the Internet. The generic name for the collection of tools
designed to protect data and to thwart hackers is computer security.

The second major change that affected security is the introduction of distributed systems and the use of networks and communications
facilities for carrying data between terminal user and computer and between computer and computer. Network security measures are
needed to protect data during their transmission. In fact, the term network security is somewhat misleading, because virtually all
business, government, and academic organizations interconn their data processing equipment with a collection of interconnected

networks. Such a collection is often referred to as an internet, L and the terminternet security is used.

[ we use the term internet, with a lowercase "i," to refer to any interconnected collection of networks. A corporate
intranet is an example of an internet. The Internet with a capital "I" may be one of the facilities used by an
organization to construct its internet.

[Page 8]

There are no clear boundaries between these two forms of security. For example, one of the most publicized types of attack on
information systems is the computer virus. A virus may be introduced into a system physically when it arrives on a diskette or optical disk
and is subsequently loaded onto a computer. Viruses may also arrive over an internet. In either case, once the virus is resident on a



computer system, internal computer security tools are needed to detect and recover from the virus.

This book focuses on internet security, which consists of measures to deter, prevent, detect, and correct security violations that involve
the transmission of information. That is a broad statement that covers a host of possibilities. To give you a feel for the areas covered in
this book, consider the following examples of security violations:

1. User A transmits a file to user B. The file contains sensitive information (e.g., payroll records) that is to be protected from
disclosure. User C, who is not authorized to read the file, is able to monitor the transmission and capture a copy of the file
during its transmission.

2. A network manager, D, transmits a message to a computer, E, under its management. The message instructs computer E to
update an authorization file to include the identities of a number of new users who are to be given access to that computer.
User F intercepts the message, alters its contents to add or delete entries, and then forwards the message to E, which
accepts the message as coming from manager D and updates its authorization file accordingly.

3. Rather than intercept a message, user F constructs its own message with the desired entries and transmits that message to E
as if it had come from manager D. Computer E accepts the message as coming from manager D and updates its
authorization file accordingly.

4. An employee is fired without warning. The personnel manager sends a message to a server system to invalidate the
employee's account. When the invalidation is accomplished, the server is to post a notice to the employee's file as
confirmation of the action. The employee is able to intercept the message and delay it long enough to make a final access to
the server to retrieve sensitive information. The message is then forwarded, the action taken, and the confirmation posted.
The employee's action may go unnoticed for some considerable time.

5. A message is sent from a customer to a stockbroker with instructions for various transactions. Subsequently, the investments
lose value and the customer denies sending the message.

Although this list by no means exhausts the possible types of security violations, it illustrates the range of concerns of network security.

[Page 9]
Internetwork security is both fascinating and complex. Some of the reasons follow:

1. Security involving communications and networks is not as simple as it might first appear to the novice. The requirements
seem to be straightforward; indeed, most of the major requirements for security services can be given self-explanatory
one-word labels: confidentiality, authentication, nonrepudiation, integrity. But the mechanisms used to meet those
requirements can be quite complex, and understanding them may involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always consider potential attacks on those security
features. In many cases, successful attacks are designed by looking at the problem in a completely different way, therefore
exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are often counterintuitive: It is not obvious from the
statement of a particular requirement that such elaborate measures are needed. It is only when the various countermeasures
are considered that the measures used make sense.

4. Having designed various security mechanisms, it is necessary to decide where to use them. This is true both in terms of
physical placement (e.g., at what points in a network are certain security mechanisms needed) and in a logical sense [e.g., at
what layer or layers of an architecture such as TCP/IP (Transmission Control Protocol/Internet Protocol) should mechanisms
be placed].

5. Security mechanisms usually involve more than a particular algorithm or protocol. They usually also require that participants
be in possession of some secret information (e.g., an encryption key), which raises questions about the creation, distribution,
and protection of that secret information. There is also a reliance on communications protocols whose behavior may
complicate the task of developing the security mechanism. For example, if the proper functioning of the security mechanism
requires setting time limits on the transit time of a message from sender to receiver, then any protocol or network that
introduces variable, unpredictable delays may render such time limits meaningless.

Thus, there is much to consider. This chapter provides a general overview of the subject matter that structures the material in the
remainder of the book. We begin with a general discussion of network security services and mechanisms and of the types of attacks they



are designed for. Then we develop a general overall model within which the security services and mechanisms can be viewed.
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[Page 9 (continued)]

1.1. Security Trends

In 1994, the Internet Architecture Board (IAB) issued a report entitled "Security in the Internet Architecture" (RFC 1636). The report stated
the general consensus that the Internet needs more and better security, and it identified key areas for security mechanisms. Among these
were the need to secure the network infrastructure from unauthorized monitoring and control of network traffic and the need to secure
end-user-to-end-user traffic using authentication and encryption mechanisms.

[Page 10]

These concerns are fully justified. ?: ff?f'ffation, consider the trends reported by the Computer Emergency Response Team (CERT)
Coordination Center (CERT/CC). Eigure 1.1s| shows the trend in Internet-related vulnerabilities reported to CERT over a 10-year period.
These include security weaknesses in the 0] i stems of attached computers (e.g., Windows, Linux) as well as vulnerabilities in
Internet routers and other network devices. Fi:ure 1.13 shows the number of security-related incidents reported to CERT. These include
denial of service attacks; IP spoofing, in which intruders create packets with false IP addresses and exploit applications that use
authentication based on IP; and various forms of eavesdropping and packet sniffing, in which attackers read transmitted information,

including logon information and database contents.

[Page 11]

Figure 1.1. CERT Statistics
(This item is displayed on page 10 in the print version)

lView full size image|
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Over time, the attacks on the Internet and Internet-attached systems have grown more sophisticated while the amount of skill and

knowledge required to mount an attack has declined (Eigure 1.4). Attacks have become more automated and can cause greater amounts
of damage.




Figure 1.2. Trends in Attack Sophistication and Intruder Knowledge
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This increase in attacks coincides with an increased use of the Internet and with increases in the complexity of protocols, applications, and
the Internet itself. Critical infrastructures increasingly rely on the Internet for operations. Individual users rely on the security of the Internet,
email, the Web, and Web-based applications to a greater extent than ever. Thus, a wide range of technologies and tools are needed to
counter the growing threat. At a basic level, cryptographic algorithms for confidentiality and authentication assume greater importance. As
well, designers need to focus on Internet-based protocols and the vulnerabilities of attached operating systems and applications. This book

surveys all of these technical areas.
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1.2. The OSI Security Architecture

To assess effectively the security needs of an organization and to evaluate and choose various security products and policies,
the manager responsible for security needs some systematic way of defining the requirements for security and characterizing the
approaches to satisfying those requirements. This is difficult enough in a centralized data processing environment; with the use of local
and wide area networks, the problems are compounded.

ITU- Recommendation X.800, Security Architecture for OSlI, defines such a systematic approach The OSI security architecture is
useful to managers as a way of organizing the task of providing security. Furthermore, because this architecture was developed as an
international standard, computer and communications vendors have developed security features for their products and services that
relate to this structured definition of services and mechanisms.

2l The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T) is a
United Nationssponsored agency that develops standards, called Recommendations, relating to
telecommunications and to open systems interconnection (OSl).

Bl The osI security architecture was developed in the context of the OSI protocol architecture, which is described
in Appendix H. However, for our purposes in this chapter, an understanding of the OSI protocol architecture is not
required.

For our purposes, the OSI security architecture provides a useful, if abstract, overview of many of the concepts that this book deals with.
The OSI security architecture focuses on security attacks, mechanisms, and services. These can be defined briefly as follows:

® Sccurity attack: Any action that compromises the security of information owned by an organization.

® Security mechanism: A process (or a device incorporating such a process) that is designed to detect, prevent, or recover
from a security attack.

° Security service: A processing or communication service that enhances the security of the data processing systems and the
information transfers of an organization. The services are intended to counter security attacks, and they make use of one or
more security mechanisms to provide the service.

In the literature, the terms threat and attack are commonly used to mean more or less the same thin . provides definitions taken
from RFC 2828, Internet Security Glossary.

Table 1.1. Threats and Attacks (RFC 2828)

Threat

A potential for violation of security, which exists when there is a circumstance, capability, action, or event that could breach security
and cause harm. That is, a threat is a possible danger that might exploit a vulnerability.

Attack

An assault on system security that derives from an intelligent threat; that is, an intelligent act that is a deliberate attempt (especially in
the sense of a method or technique) to evade security services and violate the security policy of a system.
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1.3. Security Attacks

A useful means of classifying security attacks, used both in X.800 and RFC 2828, is in terms gfassive attacks and active attacks. A
passive attack attempts to learn or make use of information from the system but does not affect system resources. An active attack
attempts to alter system resources or affect their operation.

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal of the opponent is to obtain information
that is being transmitted. Two types of passive attacks are release of message contents and traffic analysis.

The release of message contents is easily understood . A telephone conversation, an electronic mail message, and a
transferred file may contain sensitive or confidential information. We would like to prevent an opponent from learning the contents of these

transmissions.

Figure 1.3. Passive Attacks
(This item is displayed on page 14 in the print version)
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A second type of passive attack, traffic analysis, is subtler ). Suppose that we had a way of masking the contents of
messages or other information traffic so that opponents, even if they captured the message, could not extract the information from the
message. The common technique for masking contents is encryption. If we had encryption protection in place, an opponent might still be
able to observe the pattern of these messages. The opponent could determine the location and identity of communicating hosts and could
observe the frequency and length of messages being exchanged. This information might be useful in guessing the nature of the
communication that was taking place.

Passive attacks are very difficult to detect because they do not involve any alteration of the data. Typically, the message traffic is sent and
received in an apparently normal fashion and neither the sender nor receiver is aware that a third party has read the messages or
observed the traffic pattern. However, it is feasible to prevent the success of these attacks, usually by means of encryption. Thus, the
emphasis in dealing with passive attacks is on prevention rather than detection.



Active Attacks

Active attacks involve some modification of the data stream or the creation of a false stream and can be subdivided into four categories:
masquerade, replay, modification of messages, and denial of service.

A masquerade takes place when one entity pretends to be a different entity ). A masquerade attack usually includes one of the
other forms of active attack. For example, authentication sequences can be captured and replayed after a valid authentication sequence
has taken place, thus enabling an authorized entity with few privileges to obtain extra privileges by impersonating an entity that has those
privileges.

Figure 1.4. Active Attacks
(This item is displayed on pages 15 - 16 in the print version)
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involves the passive capture of a data unit and its subsequent retransmission to produce an unauthorized effec).
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Modification of messages simply means tha tion of a legitimate message is altered, or that messages are delayed or
reordered, to produce an unauthorized effect JFi ure 1.4d). For example, a message meaning "Allow John Smith to read confidential file
accounts" is modified to mean "Allow Fred Brown to read confidential fileaccounts."

The denial of serviceprevents or inhibits the normal use or management of communications facilities ). This attack may have
a specific target; for example, an entity may suppress all messages directed to a particular destination (e.g., the security audit service).
Another form of service denial is the disruption of an entire network, either by disabling the network or by overloading it with messages so
as to degrade performance.

[Page 15]

Active attacks present the opposite characteristics of passive attacks. Whereas passive attacks are difficult to detect, measures are
available to prevent their success. On the other hand, it is quite difficult to prevent active attacks absolutely, because of the wide variety of
potential physical, software, and network vulnerabilities. Instead, the goal is to detect active attacks and to recover from any disruption or
delays caused by them. If the detection has a deterrent effect, it may also contribute to prevention.
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1.4. Security Services

X.800 defines a security service as a service provided by a protocol layer of communicating open systems, which ensures adequate
security of the systems or of data transfers. Perhaps a clearer definition is found in RFC 2828, which provides the following definition: a
processing or communication service that is provided by a system to give a specific kind of protection to system resources; security
services implement security policies and are implemented by security mechanisms.
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X.800 divides these services into five categories and fourteen specific services (). We look at each category in turn!

4 The  is no universal agreement about many of the terms used in the security literatu or example, the term
. is sometimes used to refer to all aspects of information security. The term is sometimes
used to refer both to verification of identity and to the various functions listed under integrity in this chapter. Our
usage here agrees with both X.800 and RFC 2828.




Table 1.2. Security Services (X.800)

AUTHENTICATION

The assurance that the communicating entity is the one that it claims to be.

Peer Entity Authentication

Used in association with a logical connection to provide confidence in the identity of the entities connected.
Data Origin Authentication

In a connectionless transfer, provides assurance that the source of received data is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a resource (i.e., this service controls who can have access to a
resource, under what conditions access can occur, and what those accessing the resource are allowed to do).

DATA CONFIDENTIALITY

The protection of data from unauthorized disclosure.

Connection Confidentiality

The protection of all user data on a connection.

Connectionless Confidentiality

The protection of all user data in a single data block

Selective-Field Confidentiality

The confidentiality of selected fields within the user data on a connection or in a single data block.
Traffic Flow Confidentiality

The protection of the information that might be derived from observation of traffic flows.

DATA INTEGRITY

The assurance that data received are exactly as sent by an authorized entity (i.e., contain no modification,
insertion, deletion, or replay).
Connection Integrity with Recovery

Provides for the integrity of all user data on a connection and detects any modification, insertion, deletion, or replay of any data within
an entire data sequence, with recovery attempted.

Connection Integrity without Recovery
As above, but provides only detection without recovery.
Selective-Field Connection Integrity

Provides for the integrity of selected fields within the user data of a data block transferred over a connection and takes the form of
determination of whether the selected fields have been modified, inserted, deleted, or replayed.



Connectionless Integrity

Provides for the integrity of a single connectionless data block and may take the form of detection of data modification. Additionally, a
limited form of replay detection may be provided.

Selective-Field Connectionless Integrity

Provides for the integrity of selected fields within a single connectionless data block; takes the form of determination of whether the
selected fields have been modified.

NONREPUDIATION

Provides protection against denial by one of the entities involved in a communication of having participated in
all or part of the communication.

Nonrepudiation, Origin

Proof that the message was sent by the specified party.

Nonrepudiation, Destination

Proof that the message was received by the specified party.

[Page 18]

Authentication

The authentication service is concerned with assuring that a communication is authentic. In the case of a single message, such
as a warning or alarm signal, the function of the authentication service is to assure the recipient that the message is from the source that
it claims to be from. In the case of an ongoing interaction, such as the connection of a terminal to a host, two aspects are involved. First,
at the time of connection initiation, the service assures that the two entities are authentic, that is, that each is the entity that it claims to
be. Second, the service must assure that the connection is not interfered with in such a way that a third party can masquerade as one of
the two legitimate parties for the purposes of unauthorized transmission or reception.

Two specific authentication services are defined in X.800:

® peer entity authentication: Provides for the corroboration of the identity of a peer entity in an association. It is provided for
use at the establishment of, or at times during the data transfer phase of, a connection. It attempts to provide confidence that
an entity is not performing either a masquerade or an unauthorized replay of a previous connection.

® pData origin authentication: Provides for the corroboration of the source of a data unit. It does not provide protection against
the duplication or modification of data units. This type of service supports applications like electronic mail where there are no
prior interactions between the communicating entities.

Access Control

In the context of network security, access control is the ability to limit and control the access to host systems and applications via
communications links. To achieve this, each entity trying to gain access must first be identified, or authenticated, so that access rights



can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With respect to the content of a data transmission, several
levels of protection can be identified. The broadest service protects all user data transmitted between two users over a period of time.
For example, when a TCP connection is set up between two systems, this broad protection prevents the release of any user data
transmitted over the TCP connection. Narrower forms of this service can also be defined, including the protection of a single message or
even specific fields within a message. These refinements are less useful than the broad approach and may even be more complex and
expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from analysis. This requires that an attacker not be able to observe the
source and destination, frequency, length, or other characteristics of the traffic on a communications facility.

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single message, or selected fields within a message. Again, the
most useful and straightforward approach is total stream protection.

[Page 19]

A connection-oriented integrity service, one that deals with a stream of messages, assures that messages are received as sent, with
no duplication, insertion, modification, reordering, or replays. The destruction of data is also covered under this service. Thus, the
connection-oriented integrity service addresses both message stream modification and denial of service. On the other hand, a
connectionless integrity service, one that deals with individual messages without regard to any larger context, generally provides
protection against message modification only.

We can make a distinction between the service with and without recovery. Because the integrity service relates to active attacks, we are
concerned with detection rather than prevention. If a violation of integrity is detected, then the service may simply report this violation,
and some other portion of software or human intervention is required to recover from the violation. Alternatively, there are mechanisms
available to recover from the loss of integrity of data, as we will review subsequently. The incorporation of automated recovery
mechanisms is, in general, the more attractive alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted message. Thus, when a message is sent, the receiver can
prove that the alleged sender in fact sent the message. Similarly, when a message is received, the sender can prove that the alleged
receiver in fact received the message.

Availability Service



Both X.800 and RFC 2828 define availability to be the property of a system or a system resource being accessible and usable upon
demand by an authorized system entity, according to performance specifications for the system (i.e., a system is available if it provides
services according to the system design whenever users request them). A variety of attacks can result in the loss of or reduction in
availability. Some of these attacks are amenable to automated countermeasures, such as authentication and encryption, whereas others
require some sort of physical action to prevent or recover from loss of availability of elements of a distributed system.

X.800 treats availability as a property to be associated with various security services. However, it makes sense to call out specifically an
availability service. An availability service is one that protects a system to ensure its availability. This service addresses the security
concerns raised by denial-of-service attacks. It depends on proper management and control of system resources and thus depends on
access control service and other security services.

e prey | NEXT B
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[Page 19 (continued)]

1.5. Security Mechanisms

lists the security mechanisms defined in X.800. As can be seen the mechanisms are divided into those that are implemented in
a specific protocol layer and those that are not specific to any particular protocol layer or security service. These mechanisms will be
covered in the appropriate places in the book and so we do not elaborate now, except to comment on the definition of encipherment.
X.800 distinguishes between reversible encipherment mechanisms and irreversible encipherment mechanisms. A reversible
encipherment mechanism is simply an encryption algorithm that allows data to be encrypted and subsequently decrypted. Irreversible
encipherment mechanisms include hash algorithms and message authentication codes, which are used in digital signature and message
authentication applications.

[Page 20]



Table 1.3. Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

May be incorporated into the appropriate protocol layer in order to provide some of the OSI security services.

Encipherment

The use of mathematical algorithms to transform data into a form that is not readily intelligible. The transformation and subsequent
recovery of the data depend on an algorithm and zero or more encryption keys.

Digital Signature

Data appended to, or a cryptographic transformation of, a data unit that allows a recipient of the data unit to prove the source and
integrity of the data unit and protect against forgery (e.g., by the recipient).

Access Control

A variety of mechanisms that enforce access rights to resources.

Data Integrity

A variety of mechanisms used to assure the integrity of a data unit or stream of data units.
Authentication Exchange

A mechanism intended to ensure the identity of an entity by means of information exchange.
Traffic Padding

The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts.

Routing Control

Enables selection of particular physically secure routes for certain data and allows routing changes, especially when a breach of
security is suspected.

Notarization
The use of a trusted third party to assure certain properties of a data exchange.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular OSI security service or protocol layer.

Trusted Functionality

That which is perceived to be correct with respect to some criteria (e.g., as established by a security policy).

Security Label

The marking bound to a resource (which may be a data unit) that names or designates the security attributes of that resource.
Event Detection

Detection of security-relevant events.

Security Audit Trail

Data collected and potentially used to facilitate a security audit, which is an independent review and examination of system records
and activities.



Security Recovery

Deals with requests from mechanisms, such as event handling and management functions, and takes recovery actions.

, based on one in X.800, indicates the relationship between security services and security mechanisms.
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Table 1.4. Relationship between Security Services and Mechanisms

Mechanism

Digital Access Data Authentication | Traffic Routing
Service Encipherment | Signature | Control Integrity Exchange Padding Control Notarization
Peer entity Y Y Y
authentication
Data origin Y Y
authentication
Access control Y
Confidentiality Y Y
Traffic flow Y Y Y
confidentiality
Data integrity Y Y Y
Nonrepudiation Y Y Y
Availability Y Y

e prey | NEXT
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1.6. A Model for Network Security

NEXT B

A model for much of what we will be discussing is captured, in very general terms, i. A message is to be transferred from one
party to another across some sort of internet. The two parties, who are the principals in this transaction, must cooperate for the exchange
to take place. A logical information channel is established by defining a route through the internet from source to destination and by the
cooperative use of communication protocols (e.g., TCP/IP) by the two principals.
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Figure 1.5. Model for Network Security
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Security aspects come into play when it is necessary or desirable to protect the information transmission from an opponent who may
present a threat to confidentiality, authenticity, and so on. All the techniques for providing security have two components:

® A security-related transformation on the information to be sent. Examples include the encryption of the message, which
scrambles the message so that it is unreadable by the opponent, and the addition of a code based on the contents of the
message, which can be used to verify the identity of the sender

Some secret information shared by the two principals and, it is hoped, unknown to the opponent. An example is an encryption
key used onjunction with the transformation to scramble the message before transmission and unscramble it on

. 5
reception.
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Bl part Two discusses a form of encryption, known as public-key encryption, in which only one of the two
principals needs to have the secret information.
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A trusted third party may be needed to achieve secure transmission. For example, a third party may be responsible for distributing the
secret information to the two principals while keeping it from any opponent. Or a third party may be needed to arbitrate disputes between
the two principals concerning the authenticity of a message transmission.

This general model shows that there are four basic tasks in designing a particular security service:

1. Design an algorithm for performing the security-related transformation. The algorithm should be such that an opponent cannot
defeat its purpose.

2. Generate the secret information to be used with the algorithm.
3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the security algorithm and the secret information to
achieve a particular security service.

%ﬁts Ona through of this book concentrates on the types of security mechanisms and services that fit into the model shown i
[l

.H. However, there are other security-related situations of interest that do not neatly fit this model but that are considered in this book. A
general model of these other situations is illustrated by figure 1.4, which reflects a concern for protecting an information system from
unwanted access. Most readers are familiar with the concerns caused by the existence of hackers, who attempt to penetrate systems that
can be accessed over a network. The hacker can be someone who, with no malign intent, simply gets satisfaction from breaking and
entering a computer system. Or, the intruder can be a disgruntled employee who wishes to do damage, or a criminal who seeks to exploit
computer assets for financial gain (e.g., obtaining credit card numbers or performing illegal money transfers).

Figure 1.6. Network Access Security Model
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Another type of unwanted access is the placement in a computer system of logic that exploits vulnerabilities in the system and that can
affect application programs as well as utility programs, such as editors and compilers. Programs can present two kinds of threats:

® |hformation access threats intercept or modify data on behalf of users who should not have access to that data.

® Service threats exploit service flaws in computers to inhibit use by legitimate users.
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Viruses and worms are two examples of software attacks. Such attacks can be introduced into a system by means of a disk that contains
the unwanted logic concealed in otherwise useful software. They can also be inserted into a system across a network; this latter
mechanism is of more concern in network security.

The security mechanisms needed to cope with unwanted access fall into two broad categories (see ). The first category might
be termed a gatekeeper function. It includes password-based login procedures that are designed to deny access to all but authorized users
and screening logic that is designed to detect and reject worms, viruses, and other similar attacks. Once either an unwanted user or
unwanted software gains access, the second line of defense consists of a variety of internal controls that mopitor activity and analyze
stored information in an attempt to detect the presence of unwanted intruders. These issues are explored in

K==1 ExT
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1.7. Recommended Reading and Web Sites

[%] provides a good introduction to b puter and network security. Two other excelle S artlEPOd and [BISHOH].
Bl

[BISHOJ] covers much the same ground aspISHO4] but with more mathematical detail and rigor.dSCHNO is valuable reading for any
practitioner in the field of computer or network security: it discusses the limitations of technology, and cryptography in particular, in
providing security, and the need to consider the hardware, the software implementation, the networks, and the people involved in
providing and attacking security.

BISHOJ Bishop, M. Computer Security: Art and Science Boston: Addison-Wesley, 2003.
BISHOH Bishop, M. Introduction to Computer Security. Boston: Addison-Wesley, 2005.
PELEOZ Pfleeger, C. Security in Computing. Upper Saddle River, NJ: Prentice Hall, 2002.

PIEPO] Pieprzyk, J.; Hardjono, T.; and Seberry, J.Fundamentals of Computer Security. New York:
Springer-Verlag, 2003.

SCHNOQ Schneier, B. Secrets and Lies: Digital Security in a Networked World New York: Wiley 2000.

5 Recommended Web Sites

The following Web siteJa are of general interest related to cryptography and network security:

6] Because URLs sometimes change, they are not included. For all of the Web sites listed in this and subsequent
chapters, the appropriate link is at this book's Web site atl/vilIiamstalIinqs.com/Crvpto/Crvpto4e.htm .

® COAST: Comprehensive set of links related to cryptography and network security.
® ETF Security Area: Material related to Internet security standardization efforts.

° Computer and Network Security Reference Index: A good index to vendor and commercial products, FAQs, newsgroup
archives, papers, and other Web sites.
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http://williamstallings.com/Crypto/Crypto4e.html

® The Cryptography FAQ: Lengthy and worthwhile FAQ covering all aspects of cryptography.

® Tom Dunigan's Security Page: An excellent list of pointers to cryptography and network security Web sites.

® Helgar Lipma's Cryptology Pointers: Another excellent list of pointers to cryptography and network security Web sites.
® |EEE Technical Committee on Security and Privacy:Copies of their newsletter, information on IEEE-related activities.

® Computer Security Resource Center: Maintained by the National Institute of Standards and Technology (NIST); contains a
broad range of information on security threats, technology, and standards.

® Security Focus: A wide variety of security information, with an emphasis on vendor products and end-user concerns.

® SANS Institute: Similar to Security Focus. Extensive collection of white papers.

E=a wExT



" prey wEXT

[Page 25 (continued)]

1.8. Key Terms, Review Questions, and Problems
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raffic analysig

Review Questions

11 What is the OSI security architecture?

1.2 What is the difference between passive and active security threats?
1.3 List and briefly define categories of passive and active security attacks.
14 List and briefly define categories of security services.

15 List and briefly define categories of security mechanisms.

Problems

1.1 Draw a matrix similar to that shows the relationship between security services and attacks.

1.2 Draw a matrix similar to that shows the relationship between security mechanisms and attacks.
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Part One: Symmetric Ciphers

Cryptography is probably the most important aspect of communications security and is
becoming increasingly important as a basic building block for computer security.

Computers at Risk: Safe Computing in the Information Age, National Research Council,
1991

The increased use of computer and communications systems by industry has increased the
risk of theft of proprietary information. Although these threats may require a variety of
countermeasures, encryption is a primary method of protecting valuable electronic
information.

Communications Privacy: Federal Policy and Actions, General Accounting Office Report
GAO/0SI-94-2, November 1993

By far the most important automated tool for network and communications security is encryption. Two forms of
encryption are in common use: conventional, or symmetric, encryption and public-key, or asymmetric, encryption.
Part One provides a survey of the basic principles of symmetric encryption, looks at widely used algorithms, and
discusses applications of symmetric cryptography.



Road Map for Part One

: Classical Encryption Techniques

describes classical symmetric encryption techniques. It provides a gentle and interesting
introduction to cryptography and cryptanalysis and highlights important concepts.

[Page 27]
: Block Ciphers and the Data Encryption Standard

introduces the principles of modern symmetric cryptography, with an emphasis on the
most widely used encryption technique, the Data Encryption Standard (DES). The chapter includes
a discussion of design considerations and cryptanalysis and introduces the Feistel cipher, which is
the basic structure of most modern symmetric encryption schemes.

: Finite Fields

Finite fields have become increasingly important in cryptography. A number of cryptographic
algorithms rely heavily on properties of finite fields, notably the Advanced Encryption Standard

(AES) and elliptic curve cryptography. This chapter is pasiti here so that concepts relevant to
AES can be introduced prior to the discussion of AES. Chapter 4 provides the necessary

background to the understanding of arithmetic over finite fields of the form GF(Zn).

: Advanced Encryption Standard

The most important development jn _cryptography in recent years is the adoption of a new
symmetric cipher standard, AES. [Chapter § provides a thorough discussion of this cipher.

More on Symmetric Ciphers

explores additional topics related to symmetric ciphers. The chapter begins by
examining multiple encryption and, in particular, triple DES. Next, we look at the concept of block

cipher modes of operation, which deal with ways of handling plaintext longer than a single block.
Finally, the chapter discusses stream ciphers and describes RC4.

Confidentiality Using Symmetric Encryption

Beyond questions dealing with the actual construction of a symmetric encryption algorithm, a
number of design issues relate to the use of symmetric encryption to provide confidentiality.
Chapter 9 surveys the most important of these issues. The chapter includes a discussion of
end-to-end versus link encryption, techniques for achieving traffic confidentiality, and key
distribution techniques. An important related topic, random number generation, is also addressed.

NEXT B
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Chapter 2. Classical Encryption Techniques
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Many savages at the present day regard their names as vital parts of themselves, and therefore take great
pains to conceal their real names, lest these should give to evil-disposed persons a handle by which to injure their
owners.

The Golden Bough, Sir James George Frazer

Key Points

® Symmetric encryption is a form of cryptosystem in which encryption and decryption are performed using
the same key. It is also known as conventional encryption.

L4 Symmetric encryption transforms plaintext into ciphertext using a secret key and an encryption algorithm.
Using the same key and a decryption algorithm, the plaintext is recovered from the ciphertext.

® The two types of attack on an encryption algorithm are cryptanalysis, based on properties of the encryption
algorithm, and brute-force, which involves trying all possible keys.

® Traditional (precomputer) symmetric ciphers use substitution and/or transposition techniques. Substitution
techniques map plaintext elements (characters, bits) into ciphertext elements. Transposition techniques
systematically transpose the positions of plaintext elements.

® Rotor machines are sophisticated precomputer hardware devices that use substitution techniques.

® Steganography is a technique for hiding a secret message within a larger one in such a way that others
cannot discern the presence or contents of the hidden message.

Symmetric encryption, also referred to as conventional encryption or single-key encryption, was the only type of encryption in use prior
to the development of public-key encryption in the 1970s. It remains by far the most widely used of the two types of encryption. Part One
examines a number of symmetric ciphers. In this chapter, we begin with a look at a general model for the symmetric encryption process;
this will enable us to understand the context within which the algorithms are used. Next, we_examine a variety of algorithms in use before
the computer era. Finally, we look briefly at a different approach known as steganography examines the most widely used
symmetric cipher: DES.

Before beginning, we define some terms. An original message is known as the , while the coded message is called the
. The process of converti plaintext to ciphertext is known as enciphering or encryption; restoring the plaintext from
{l i js deciphering or Eecr;gtion.. The many schemes used for encryptiop_constitute the area of study known as
_:r;:to:ra:hj. Such a scheme is known as a cryptographic systemor a Liph

message without any knowledge of the enciphering details fall into the area of grypta
"breaking the code." The areas of cryptography and cryptanalysis together are called

echniques used for deciphering a
ryptanalysis is what the layperson calls

[Page 30]
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2.1. Symmetric Cipher Model

A symmetric encryption scheme has five ingredients 1)

® plaintext: This is the original intelligible message or data that is fed into the algorithm as input.
® Encryption algorithm: The encryption algorithm performs various substitutions and transformations on the plaintext.

® Secret key: The secret key is also input to the encryption algorithm. The key is a value independent of the plaintext and of the
algorithm. The algorithm will produce a different output depending on the specific key being used at the time. The exact
substitutions and transformations performed by the algorithm depend on the key.

® Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and the secret key. For a given
message, two different keys will produce two different ciphertexts. The ciphertext is an apparently random stream of data and,
as it stands, is unintelligible.

® Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the ciphertext and the secret key and
produces the original plaintext.

Figure 2.1. Simplified Model of Conventional Encryption
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There are two requirements for secure use of conventional encryption:



1. We need a strong encryption algorithm. At a minimum, we would like the algorithm to be such that an opponent who knows the
algorithm and has access to one or more ciphertexts would be unable to decipher the ciphertext or figure out the key. This
requirement is usually stated in a stronger form: The opponent should be unable to decrypt ciphertext or discover the key even
if he or she is in possession of a number of ciphertexts together with the plaintext that produced each ciphertext.
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2. Sender and receiver must have obtained copies of the secret key in a secure fashion and must keep the key secure. If
someone can discover the key and knows the algorithm, all communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the ciphertext plus knowledge of the encryption/decryption
algorithm. In other words, we do not need to keep the algorithm secret; we need to keep only the key secret. This feature of symmetric
encryption is what makes it feasible for widespread use. The fact that the algorithm need not be kept secret means that manufacturers can
and have developed low-cost chip implementations of data encryption algorithms. These chips are widely available and incorporated into a
number of products. With the use of symmetric encryption, the principal security problem is maintaining the secrecy of the key.

Let us take a closer look at the essential elements of a symmetric encryption scheme, using . A source produces a message in
plaintext, X = [X1, X2, ..., XM]. The M elements of X are letters in some finite alphabet. Traditionally, the alphabet usually consisted of the

26 capital letters. Nowadays, the binary alphabet {0, 1} is typically used. For encryption, a key of the form K = [K1, K2, ..., KJ] is generated.
If the key is generated at the message source, then it must also be provided to the destination by means of some secure channel.
Alternatively, a third party could generate the key and securely deliver it to both source and destination.

Figure 2.2. Model of Conventional Cryptosystem
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With the message X and the encryption keyK as input, the encryption algorithm forms the ciphertextY = [Y1, Y2, ..., YN]. We can write this



as

Y = E(K, X)
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This notation indicates thatY is produced by using encryption algorithm E as a function of the plaintexX, with the specific function
determined by the value of the key K.

The intended receiver, in possession of the key, is able to invert the transformation:
X=D(K,Y)

An opponent, observing Y but not having access toK or X, may attempt to recover X or K or both X and K. It is assumed that the opponent
knows the encryption (E) and decryption (D) algorithms. If the opponent is interested in only this particular message, then the focus of the
.

effort is to recover X by generating a plaintext estimate "][I Often, however, the opponent is interested in being able to read future
!

messages as well, in which case an attempt is made to recover K by generating an estimate K

Cryptography

Cryptographic systems are characterized along three independent dimensions:

1. Thetype of operations used for transforming plaintext to ciphertext. All encryption algorithms are based on two general
principles: substitution, in which each element in the plaintext (bit, letter, group of bits or letters) is mapped into another
element, and transposition, in which elements in the plaintext are rearranged. The fundamental requirement is that no
information be lost (that is, that all operations are reversible). Most systems, referred to as product systems, involve multiple
stages of substitutions and transpositions.

2. The number of keys used. If both sender and receiver use the same key, the system is referred to as symmetric, single-key,
secret-key, or conventional encryption. If the sender and receiver use different keys, the system is referred to as asymmetric,
two-key, or public-key encryption.

3. The way in which the plaintext is progcessed, A processes the input one block of elements at a time, producing
an output block for each input block. A processes the input elements continuously, producing output one element
at a time, as it goes along.

Cryptanalysis

Typically, the objective of attacking an encryption system is to recover the key in use rather then simply to recover the plaintext of a single
ciphertext. There are two general approaches to attacking a conventional encryption scheme:

® Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps some knowledge of the general
characteristics of the plaintext or even some sample plaintext-ciphertext pairs. This type of attack exploits the characteristics of
the algorithm to attempt to deduce a specific plaintext or to deduce the key being used.
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® Brute-force attack:  The attacker tries every possible key on a piece of ciphertext until an intelligible translation into plaintext
is obtained. On average, half of all possible keys must be tried to achieve success.

If either type of attack succeeds in deducing the key, the effect is catastrophic: All future and past messages encrypted with that key are
compromised.

We first consider cryptanalysis and then discuss brute-force attacks.

summarizes the various types of cryptanalytic attacks, based on the amount of information known to the cryptanalyst. The
most difficult problem is presented when all that is available is the ciphertext only. In some cases, not even the encryption algorithm is
known, but in general we can assume that the opponent does know the algorithm used for encryption. One possible attack under these
circumstances is the brute-force approach of trying all possible keys. If the key space is very large, this becomes impractical. Thus, the
opponent must rely on an analysis of the ciphertext itself, generally applying various statistical tests to it. To use this approach, the
opponent must have some general idea of the type of plaintext that is concealed, such as English or French text, an EXE file, a Java
source listing, an accounting file, and so on.



Table 2.1. Types of Attacks on Encrypted Messages

Type of Attack Known to Cryptanalyst

Ciphertext only
® Encryption algorithm

® Ciphertext

Known plaintext
® Encryption algorithm

® Ciphertext

® (One or more plaintext-ciphertext pairs formed with the secret key

Chosen plaintext
° Encryption algorithm

L Ciphertext

® pjaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

Chosen ciphertext
L Encryption algorithm

® Ciphertext

® Purported ciphertext chosen by cryptanalyst, together with its corresponding
decrypted plaintext generated with the secret key

Chosen text
® Encryption algorithm

® Ciphertext

® plaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

® Purported ciphertext chosen by cryptanalyst, together with its corresponding
decrypted plaintext generated with the secret key

The ciphertext-only attack is the easiest to defend against because the opponent has the least amount of information to work with. In many
cases, however, the analyst has more information. The analyst may be able to capture one or more plaintext messages as well as their
encryptions. Or the analyst may know that certain plaintext patterns will appear in a message. For example, a file that is encoded in the
Postscript format always begins with the same pattern, or there may be a standardized header or banner to an electronic funds transfer
message, and so on. All these are examples of known plaintext. With this knowledge, the analyst may be able to deduce the key on the
basis of the way in which the known plaintext is transformed.
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Closely related to the known-plaintext attack is what might be referred to as a probable-word attack. If the opponent is working with the



encryption of some general prose message, he or she may have little knowledge of what is in the message. However, if the opponent is
after some very specific information, then parts of the message may be known. For example, if an entire accounting file is being
transmitted, the opponent may know the placement of certain key words in the header of the file. As another example, the source code for
a program developed by Corporation X might include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the system a message chosen b lyst, then a
chosen-plaintext attack is possible. An example of this strategy is differential cryptanalysis, explored ifChapter 3. In general, if the analyst
is able to choose the messages to encrypt, the analyst may deliberately pick patterns that can be expected to reveal the structure of the
key.

lists two other types of attack: chosen ciphertext and chosen text. These are less commonly employed as cryptanalytic
techniques but are nevertheless possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack. Generally, an encryption algorithm is designed to withstand a
known-plaintext attack.

Two more definitions are worthy of note. An encryption scheme is anonditionallv securd if the ciphertext generated by the scheme
does not contain enough information to determine uniquely the corresponding plaintext, no matter how much ciphertext is available. That
is, no matter how much time an opponent has, it is impossible for him or her to decrypt the ciphertext, simply because the required
information is not there. With the exception of a scheme known as the one-time pad (described later in this chapter), there is no encryption
algorithm that is unconditionally secure. Therefore, all that the users of an encryption algorithm can strive for is an algorithm that meets
one or both of the following criteria:

® The cost of breaking the cipher exceeds the value of the encrypted information.

® Thetime required to break the cipher exceeds the useful lifetime of the information.

An encryption scheme is said to be l:omputationallv securJ if either of the foregoing two criteria are met. The rub is that it is very difficult
to estimate the amount of effort required to cryptanalyze ciphertext successfully.

All forms of cryptanalysis for symmetric encryption schemes are designed to exploit the fact that traces of structure or pattern in the
plaintext may survive encryption and be f'ffff'ple in the ciphertext. This will become clear as we examine various symmetric encryption
schemes in this chapter. We will see in Part Twd that cryptanalysis for public-key schemes proceeds from a fundamentally different
premise, namely, that the mathematical properties of the pair of keys may make it possible for one of the two keys to be deduced from the
other.
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A brute-force attack involves trying every possible key until an intelligible translation of the ciphertext into plaintext is obtained. On
average, half of all possible keys must be tried to achieve success. shows how much time is involved for various key spaces.
Results are shown for four binary key sizes. The 56-bit key size is used with the DES (Data Encryption Standard) algorithm, and the
168-bit key size is used for triple DES. The minimum key size specified for AES (Advanced Encryption Standard) is 128 bits. Results are
also shown for what are called substitution codes that use a 26-character key (discussed later), in which all possible permutations of the
26 characters serve as keys. For each key size, the results are shown assuming that it takes 1 ms to perform a single decryption, which is
a reasonable order of magnitude for today's machines. With the use of massively parallel organizations of microprocessors, it may be
possible to achieve processing rates many orders of magnitude greater. The final column of [Table 2.4 considers the results for a system
that can process 1 million keys per microsecond. As you can see, at this performance level, DES can no longer be considered
computationally secure.




Table 2.2. Average Time Required for Exhaustive Key Search

Key size (bits)

Number of alternative keys

Time required at 1 decryption/ms

Time required at 106
decryption/ms

32

56

128

168

26 characters
(permutation)

232 =43x 109

256 =7.2x 1016
2128 =3.4x 1038
2168 =3.7x 1050

26! _ 4% 1026

31 = 35.8 minutes
27 ms

255 ms - 1142 years

2127 ms =54x 1024 years

2167 ms =5.9x 1036 years

2 X 1026 ms =6.4x 1012 years

2.15 milliseconds

10.01 hours

5.4 x 1018 years
59x 1030 years

6.4 x 106 years

NEXT W
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2.2. Substitution Techniques

In this section and the next, we examine a sampling of what might be called classical encryption techniques. A study of these techniques
enables us to illustrate the basic approaches to symmetric encryption used today and the types of cryptanalytic attacks that must be
anticipated.

The two basic building blocks of all encryption techniques are substitution and transposition. We examine these in the next two sections.
Finally, we discuss a system that combines both substitution and transposition.

A substitution technique is one in which the letters of plaintext are replaced by other letters or by numbers or symbols.= If the plaintext is

viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns.

[ When letters are involved, the following conventions are used in this book. Plaintext is always in lowercase;
ciphertext is in uppercase; key values are in italicized lowercase.
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Caesar Cipher

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar. TheCaesar cipher involves replacing each letter
of the alphabet with the letter standing three places further down the alphabet. For example,

plain: meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A. We can define the transformation by listing all possibilities, as
follows:

plain: abcdefghijklmnopqgrstuvwxyz
cipherDEFGHIJKLMNOPQRSTUVWXYZABC

Let us assign a numerical equivalent to each letter:


file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

13 14 15 16 17 18 19 20 21 22 23 24 25

Then the algorithm can be expressed as follows. For each plaintext letter p, substitute the ciphertext letter C:

21 \We define a modn to be the remainder whena is divided byn. For example, 11 mod 7 = 4. Se fora
further discussion of modular arithmetic.

C =E(3, p) =(p+ 3) mod 26

A shift may be of any amount, so that the general Caesar algorithm is

C =E(k, p) = (p + k) mod 26

where k takes on a value in the range 1 to 25. The decryption algorithm is simply
p=D(, C) = (C k) mod 26

Ifitis at a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is easily performed: Simply try all the 25 possible
keys. Eigure 2.9 shows the results of applying this strategy to the example ciphertext. In this case, the plaintext leaps out as occupying the
third line.

Figure 2.3. Brute-Force Cryptanalysis of Caesar Cipher
(This item is displayed on page 37 in the print version)




Three important characteristics of this problem enabled us to use a brute-force cryptanalysis:
1. The encryption and decryption algorithms are known.
2. There are only 25 keys to try.

3. The language of the plaintext is known and easily recognizable.
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In most networking situations, we can assume that the algorithms are known. What generally makes brute-force cry impractical

is the use of an algorithm that employs a large number of keys. For example, the triple DES algorithm, examined infChapter g, makes use

of a 168-bit key, giving a key space of 2168 or greater than 3.7 x 10r’ 0 possible keys.

The third characteristic is also significant. If the language of the plaintext is unknown, then plaintext output may not be recog

Fi;ure 2.2

Furthermore, the input may be abbreviated or compressed in some fashion, again making recognition difficult. For example,

shows a portion of a text file compressed using an algorithm called ZIP. If this file is then encrypted with a simple substitution cipher
(expanded to include more than just 26 alphabetic characters), then the plaintext may not be recognized when it is uncovered in the

brute-force cryptanalysis.
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Figure 2.4. Sample of Compressed Text
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Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase in the key space can be achieved by allowing an
arbitrary substitution. Recall the assignment for the Caesar cipher:

plain: abcdefghijklmnopqgrstuvwxyz
cipherDEFGHIJKLMNOPQRSTUVWXYZABC

If, instead, the "cipher" line can be any permutation of the 26 alphabetic characters, then there are 26! or greater than 4 x 1026 possible
keys. This is 10 orders of magnitude greater than the key space for DES and would seem to eliminate brute-force techniques for
cryptanalysis. Such an approach is referred to as a monoalphabetic substitution cipher, because a single cipher alphabet (mapping
from plain alphabet to cipher alphabet) is used per message.

There is, however, another line of attack. If the cryptanalyst knows the nature of the plaintext (e.g., noncompressed English text), then the
analyst can exploit th arities of the language. To see how such a cryptanalysis might proceed, we give a partial example here that is
adapted from one in [SINK64]. The ciphertext to be solved is

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

As a first step, the relative frequency tters can be determined and compared to a standard frequency distribution for English, such
as is shown in (based on EWAO(I]). If the message were long enough, this technique alone might be sufficient, but because

this is a relatively short message, we cannot expect an exact match. In any case, the relative frequencies of the letters in the ciphertext (in

percentages) are as follows:

P 13.33 H 5.83 F 3.33 B 1.67 C 0.00
Z11.67 D 5.00 W 3.33 G 1.67 K 0.00
S 8.33 E 5.00 Q250 Y 1.67 L 0.00
U 8.33 VvV 4.17 T2.50 10.83 N 0.00
07.50 X4.17 A 1.67 J0.83 R 0.00

M 6.67



[Page 39]

Figure 2.5. Relative Frequency of Letters in English Text
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Comparing this breakdown with , it seems likely that cipher letters P and Z are the equivalents of plain letters e and t, but it is not
certain which is which. The letters S, U, O, M, and H are all of relatively high frequency and probably correspond to plain letters from the
set {a, h, i, n, o, r, s}.The letters with the lowest frequencies (namely, A, B, G, Y, |, J) are likely included in the set {b, j, k, g, v, X, z}.

There are a number of ways to proceed at this point. We could make some tentative assignments and start to fill in the plaintext to see if it
looks like a reasonable "skeleton" of a message. A more systematic approach is to look for other regularities. For example, certain words
may be known to be in the text. Or we could look for repeating sequences of cipher letters and try to deduce their plaintext equivalents.

A powerful tool is to look at the frequency of two-letter combinations, known as digrams. A table similar to could be drawn up
showing the relative frequency of digrams. The most common such digram is th. In our ciphertext, the most common digram is ZW, which
appears three times. So we make the correspondence of Z with t and W with h. Then, by our earlier hypothesis, we can equate P with e.
Now notice that the sequence ZWP appears in the ciphertext, and we can translate that sequence as "the." This is the most frequent
trigram (three-letter combination) in English, which seems to indicate that we are on the right track.

Next, notice the sequence ZWSZ in the first line. We do not know that these four letters form a complete word, but if they do, it is of the



form th_t. If so, S equates with a.
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So far, then, we have

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
ta e ete athateea a
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

et tathaeee aeth ta
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

e eetat e the t

Only four letters have been identified, but already we have quite a bit of the message. Continued analysis of frequencies plus trial and
error should easily yield a solution from this point. The complete plaintext, with spaces added between words, follows:

it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

Monoalphabetic ciphers are easy to break because they reflect the frequency data of the original alphabet. A countermeasure is to provide
multiple substitutes, known as homophones, for a single letter. For example, the letter e could be assigned a number of different cipher
symbols, such as 16, 74, 35, and 21, with each homophone used in rotation, or randomly. If the number of symbols assigned to each letter
is proportional to the relative frequency of that letter, then single-letter frequency information is completely obliterated. The great
mathematician Carl Friedrich Gauss believed that he had devised an unbreakable cipher using homophones. However, even with
homophones, each element of plaintext affects only one element of ciphertext, and multiple-letter patterns (e.g., digram frequencies) still
survive in the ciphertext, making cryptanalysis relatively straightforward.

Two principal methods are used in substitution ciphers to lessen the extent to which the structure of the plaintext survives in the ciphertext:
One approach is to encrypt multiple letters of plaintext, and the other is to use multiple cipher alphabets. We briefly examine each.

Playfair Cipher

The best-known muItipIe-Iettncryption cipher is the Playfair, which treats digrams in the plaintext as single units and translates these

units into ciphertext digrams. 3

Bl This cipher was actually invented by British scientist Sir Charles Wheatstone in 1854, but it bears the name of his
friend Baron Playfair of St. Andrews, who championed the cipher at the British foreign office.
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The Playfair algorithm is based on the use of a5 x5 trix of letters constructed using a keyword. Here is an example, solved by Lord

Peter Wimsey in Dorothy Sayers's Have His Carcase: 4

I The book provides an absorbing account of a probable-word attack.



C H Y B D
E F G 113 K
L P Q s T
u v w X z

In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the keyword (minus duplicates) from left to right
and from top to bottom, and then filling in the remainder of the matrix with the remaining letters in alphabetic order. The letters | and J
count as one letter. Plaintext is encrypted two letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler letter, such as x, so that balloon would be treated
as ba Ix lo on.

2. Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to the right, with the first element of the
row circularly following the last. For example, ar is encrypted as RM.

3. Two plaintext letters that fall in the same column are each replaced by the letter beneath, with the top element of the column
circularly following the last. For example, mu is encrypted as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and the column occupied by the other
plaintext letter. Thus, hs becomes BP and ea becomes IM (or JM, as the encipherer wishes).

The Playfair cipher is a great advance over simple monoalphabetic ciphers. For one thing, whereas there are only 26 letters, there are 26
X 26 = 676 digrams, so that identification of individual digrams is more difficult. Furthermore, the relative frequencies of individual letters
exhibit a much greater range than that of digrams, making frequency analysis much more difficult. For these reasons, the Playfair cipher
was for a long time considered unbreakable. It was used as the standard field system by the British Army in World War | and still enjoyed
considerable use by the U.S. Army and other Allied forces during World War II.

Despite this level of confidence in its security, the Playfair cipher is relatively easy to break because it still leaves much of the structure of
the plaintext language intact. A few hundred letters of ciphertext are generally sufficient.

One way of revealing the effectiveness of the Playfair and other ciphers is shown in , based on [SIMM93]. The line labeled
plaintext pI the frequency distribution of the more than 70,000 alphabetic characters in thé&ncyclopaedia Brittanica article on

cryptology. 2 This is also the frequency distribution of any monoalphabetic substitution cipher. The plot was developed in the following
way: The number of occurrences of each letter in the text was counted and divided by the number of occurrences of the letter e (the most
frequently used letter). As a result, e has a relative frequency of 1, t of about 0.76, and so on. The points on the horizontal axis correspond
to the letters in order of decreasing frequency.

1| am indebted to Gustavus Simmons for providing the plots and explaining their method of construction.
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Figure 2.6. Relative Frequency of Occurrence of Letters
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also shows the frequency distribution that results when the text is encrypted using the Playfair cipher. To normalize the plot, the
number of occurrences of each letter in the ciphertext was again divided by the number of occurrences of e in the plaintext. The resulting
plot therefore shows the extent to which the frequency distribution of letters, which makes it trivial to solve substitution ciphers, is masked
by encryption. If the frequency distribution information were totally concealed in the encryption process, the ciphertext plot of frequencies
would be flat, and cryptanalysis using ciphertext only would be effectively impossible. As the figure shows, the Playfair cipher has a flatter
distribution than does plaintext, but nevertheless it reveals plenty of structure for a cryptanalyst to work with.

Hill CipherEi

6] This cipher is somewhat more difficult to understand than the others in this chapter, but it illustrates an important
point about cryptanalysis that will be useful later on. This subsection can be skipped on a first reading.

Another interesting multiletter cipher is the Hill cipher, developed by the mathematician Lester Hill in 1929. The encryption algorithm takes
m successive plaintext letters and substitutes for themm ciphertext letters. The substitution is determined bym linear equations in which
each character is assigned a numerical value (a=0,b =1 ... z=25). For m = 3, the system can be described as follows:
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c1 = (k11P1 + k12P2 + k13P3) mod 26

c2 = (k21P1 + k22pP2 + k23P3) mod 26



c3 = (k31P1 + k32P2 + k33P3) mod 26

This can be expressed in term of column vectors and matrices:
& ki ki ki\[fm
3 = km kzg klj, P2 1m od 26
C3 ky kv kun/\ps

or
C =KP mod 26

where C and P are column vectors of length 3, representing the plaintext and ciphertext, andK is a 3 x 3 matrix, representing the
encryption key. Operations are performed mod 26.

For example, consider the plaintext "paymoremoney" and use the encryption key

17 17 5
K=|21 18 21
2 2 19

The first three letters of the plaintext are represented by the vector

15 15 375 11
(0 |.Thenk| O | =] 819 |mod26 = | 13 | = LN5. Continuing in this fashion,
24 24 486 18

the ciphertext for the entire plaintext is LNSHDLEWMTRW.

Decryption requires using the inverse of the matrix K. The inverse K:L of a matrixK is defined by the equation KK:L = KlK =1, where | is the
matrix that is all zeros except for ones along the main diagonal from upper left to lower right. The inverse of a matrix does not always exist,
but when it does, it satisfies the preceding equation. In this case, the inverse is:

4 9 15
K+=115 17 6
24 0 17

This is demonstrated as follows:

I Ay 3 4 9 15 443 442 442 1 0 0
21 18 2] 15 17 6 1=1858 495 780 Imod26=10 1 0



\2 2 19\as 0 17) \aos 52 365/ \o o 1)

It is easily seen that if the matrix Kl is applied to the ciphertext, then theaintext is recovered. To explain how the inverse of a matrix is

determined, we make an exceedingly brief excursion into linear algebra. L For any square matrix (m x m) the determinant equals the sum
of all the products that can be formed by taking exactly one element from each row and exactly one element from each column, with
certain of the product terms preceded by a minus sign. For a 2 x 2 matrix

[ The basic concepts of [i i i Refresher document at the Computer Science
Student Resource site at WilliamStallings.com/StudentSupport.htm|. The interested reader may consult any text on

linear algebra for greater detail.
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the determinant is k11k22 k12k21. For a 3 x 3 matrix, the value of the determinant ik11k22k33 + k21k32k13 + k31k12k23 k31k22k13
k21k12k33 k11k32k23. If a square matrixA has a nonzero determinant, then the inverse of the matrix is computed asA]]ij =

(1)'+J(Dij)/ded(A), where (Dj)) is the subdeterminant formed by deleting theith row and the jth column of A and det(A) is the determinant of
A. For our purposes, all arithmetic is done mod 26.

In general terms, the Hill system can be expressed as follows:

C = E(K, P) = KP mod 26

P = DK, P) = K'C mod 26 =k kP = P

As with Playfair, the strength of the Hill cipher is that it completely hides single-letter frequencies. Indeed, with Hill, the use of a larger
matrix hides more frequency information. Thus a 3 x 3 Hill cipher hides not only single-letter but also two-letter frequency information.

Although the Hill cipher is strong against a ciphertext-only attack, it is easily broken with a known plaintext attack. For anm x m Hill cipher,
suppose we have m plaintext-ciphertext pairs, each of lengthm. We label the pairs

Pl €l
Fll ':"_"| _iw

P; = : and C; = .| such that C; = KP; for 1 = j = m and for some
Pinj Comj

unknown key matrix K. Now define twom x m matrices X = (Pjj) and Y = (Cij). Then we can form the matrix equationY = KX. IfX has an

inverse, then we can determine K = Yxl. If X is not invertible, then a new version ofX can be formed with additional plaintext-ciphertext
pairs until an invertible X is obtained.

We use an example based on one in [STINOZ]. Suppose that the plaintext "friday" is encrypted using a 2 x 2 Hill cipher to yield the
ciphertext PQCFKU. Thus, we know that


http://WilliamStallings.com/StudentSupport.html

A

K mod 26 = :and K mod 26 =

5 15 8 2 0 m)
K d26 = :
T et 3 5 24 20

Using the first two plaintext-ciphertext pairs, we have

15 2 58
TV e
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The inverse of X can be computed:
5 BYE: 49 2
17 3 1 15

SO

15 23f9 2 137 60 Hedne 7 8
16 5/\1 15 149 107 19 3

-
|
|

This result is verified by testing the remaining plaintext-ciphertext pair.

Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use different monoalphabetic substitutions as one proceeds through
the plaintext message. The general name for this approach is polyalphabetic substitution cipher. All these techniques have the
following features in common:

1. A set of related monoalphabetic substitution rules is used.
2. A key determines which particular rule is chosen for a given transformation.

The best known, and one of the simplest, such algorithm is referred to as the Vigenére cipher. In this scheme, the set of related
monoalphabetic substitution rules consists of the 26 Caesar ciphers, with shifts of 0 through 25. Each cipher is denoted by a key letter,
which is the ciphertext letter that substitutes for the plaintext letter a. Thus, a Caesar cipher with a shift of 3 is denoted by the key valued.

To aid in understanding the scheme and to aid in its use, a matrix known as the Vigeneére tableau is constructed ). Each of the
26 ciphers is laid out horizontally, with the key letter for each cipher to its left. A normal alphabet for the plaintext runs across the top. The
process of encryption is simple: Given a key letter x and a plaintext letter y, the ciphertext letter is at the intersection of the row labeledx
and the column labeled y; in this case the ciphertext is V.



Table 2.3. The Modern Vigeneére Tableau
(This item is displayed on page 46 in the print version)
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To encrypt a message, a key is needed that is as long as the message. Usually, the key is a repeating keyword. For example, if the
keyword is deceptive, the message "we are discovered save yourself" is encrypted as follows:

key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext: ~ ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Decryption is equally simple. The key letter again identifies the row. The position of the ciphertext letter in that row determines the column,
and the plaintext letter is at the top of that column.

The strength of this cipher is that there are multiple ciphertext letters for each plaintext letter, one for each unique letter of the keyword
Thus, the letter frequency information is obscured. However, not all knowledge of the plaintext structure is lost. For example,
shows the frequency distribution for a Vigenere cipher with a keyword of length 9. An improvement is achieved over the Playfair cipher, but
considerable frequency information remains.
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It is instructive to sketch a method of breaking this cipher, because the method reveals some of the mathematical principles that apply in
cryptanalysis.

First, suppose that the opponent believes that the ciphertext was encrypted using either monoalphabetic substitution or a Vigenére cipher.
A simple test can be made to make a determination. If a monoalphabetic substitution is l,fzf Ilfg the statistical properties of the
ciphertext should be the same as that of the language of the plaintext. Thus, referring to figure 2.5, there should be one cipher letter with a
relative frequency of occurrence of about 12.7%, one with about 9.06%, and so on. If only a single message is available for analysis, we

would not expect an exact match of this small sample with the statistical profile of the plaintext language. Nevertheless, if the
correspondence is close, we can assume a monoalphabetic substitution.

If, on the other hand, a Vigeneére cipher is suspected, then progress depends on determining the length of the keyword, as will be seen in a
moment. For now, let us concentrate on how the keyword length can be determined. The important insight that leads to a solution is the
following: If two identical sequences of plaintext letters occur at a distance that is an integer multiple of the keyword length, they will
generate identical ciphertext sequences. In the foregoing example, two instances of the sequence "red" are separated by nine character
positions. Consequently, in both cases, r is encrypted using key letter e, e is encrypted using key letterp, and d is encrypted using key
letter t. Thus, in both cases the ciphertext sequence is VTW.

An analyst looking at only the ciphertext would detect the repeated sequences VTW at a displacement of 9 and make the assumption that
the keyword is either three or nine letters in length. The appearance of VTW twice could be by chance and not reflect identical plaintext
letters encrypted with identical key letters. However, if the message is long enough, there will be a number of such repeated ciphertext
sequences. By looking for common factors in the displacements of the various sequences, the analyst should be able to make a good
guess of the keyword length.

Solution of the cipher now depends on an important insight. If the keyword length is N, then the cipher, in effect, consists ofN
monoalphabetic substitution ciphers. For example, with the keyword DECEPTIVE, the letters in positions 1, 10, 19, and so on are all
encrypted with the same monoalphabetic cipher. Thus, we can use the known frequency characteristics of the plaintext language to attack
each of the monoalphabetic ciphers separately.

The periodic nature of the keyword can be eliminated by using a nonrepeating keyword that is as long as the message itself. Vigenere
proposed what is referred to as an autokey system, in which a keyword is concatenated with the plaintext itself to provide a running key.
For our example,

key: deceptivewearediscoveredsav
plaintext:  wearediscoveredsaveyourself
ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA

Even this scheme is vulnerable to cryptanalysis. Because the key and the plaintext share the same frequency distribution of letters, a

statistical technique can be applied. For example, e enciphered by e, by, can be expected to occur with a frequency of (0.127)2
o
#==0.016, reas t enciphered byt would occur only about half as often. These regularities can be exploited to achieve successful

cryptanalysis.

8] Although the techniques for breaking a Vigeneére cipher are by no means complex, a 1917 issue o$cientific
American characterized this system as "impossible of translation." This is a point worth remembering when similar
claims are made for modern algorithms.
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The ultimate defense against such a cryptanalysis is to choose a keyword that is as long as the plaintext and has no statistical relationship

to it. Such a system was introduced by an AT&T engineer named Gilbert Vernam in 1918. His system works on binary data rather than
letters. The system can be expressed succinctly as follows:

Ci = pi $ki

where



pi = ith binary digit of plaintext
ki = ith binary digit of key
Ci = ith binary digit of ciphertext

$ = exclusive-or (XOR) operation

Thus, the ciphertext is generated by performing the bitwise XOR of the plaintext and the key. Because of the properties of the XOR,
decryption simply involves the same bitwise operation:

pi = Ci $ki

The essence of this technique is the means of construction of the key. Vernam proposed the use of a running loop of tape that eventually
repeated the key, so that in fact the system worked with a very long but repeating keyword. Although such a scheme, with a long key,
presents formidable cryptanalytic difficulties, it can be broken with sufficient ciphertext, the use of known or probable plaintext sequences,
or both.

One-Time Pad

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the Vernam cipher that yields the ultimate in security.
Mauborgne suggested using a random key that is as long as the message, so that the key need not be repeated. In addition, the key is to
be used to encrypt and decrypt a single message, and then is discarded. Each new message requires a new key of the same length as
the new message. Such a scheme, known as a one-time pad, is unbreakable. It produces random output that bears no statistical
relationship to the plaintext. Because the ciphertext contains no information whatsoever about the plaintext, there is simply no way to break
the code.

An example should illustrate our point. Suppose that we are using a Vigenéere scheme with 27 characters in which the twenty-seventh
character is the space character, but with a one-time key that is as long as the message. Thus, the tableau of must be expanded
to 27 x 27. Consider the ciphertext

ANKYODKYUREPFJIBYOJDSPLREYIUNOFDOIUERFPLUYTS
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We now show two different decryptions using two different keys:

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: pxImvmsydofuyrvzwc tnlebnecvgdupahfzzimnyih
plaintext: mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: mfugpmiydgaxgoufhkllimhsqdgogtewbqgfgyovuhwt
plaintext: miss scarlet with the knife in the library



Suppose that a cryptanalyst had managed to find these two keys. Two plausible plaintexts are produced. How is the cryptanalyst to decide
which is the correct decryption (i.e., which is the correct key)? If the actual key were produced in a truly random fashion, then the
cryptanalyst cannot say that one of these two keys is more likely than the other. Thus, there is no way to decide which key is correct and
therefore which plaintext is correct.

In fact, given any plaintext of equal length to the ciphertext, there is a key that produces that plaintext. Therefore, if you did an exhaustive
search of all possible keys, you would end up with many legible plaintexts, with no way of knowing which was the intended plaintext.
Therefore, the code is unbreakable.

The security of the one-time pad is entirely due to the randomness of the key. If the stream of characters that constitute the key is truly
random, then the stream of characters that constitute the ciphertext will be truly random. Thus, there are no patterns or regularities that a
cryptanalyst can use to attack the ciphertext.

In theory, we need look no further for a cipher. The one-time pad offers complete security but, in practice, has two fundamental difficulties:

1. There is the practical problem of making large quantities of random keys. Any heavily used system might require millions of
random characters on a regular basis. Supplying truly random characters in this volume is a significant task.

2. Even more daunting is the problem of key distribution and protection. For every message to be sent, a key of equal length is
needed by both sender and receiver. Thus, a mammoth key distribution problem exists.

Because of these difficulties, the one-time pad is of limited utility, and is useful primarily for low-bandwidth channels requiring very high
security.
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[Page 49 (continued)]

2.3. Transposition Techniques

All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext symbol. A very different kind of mapping
is achieved by performing some sort of permutation on the plaintext letters. This technique is referred to as a transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is written down as a sequence of diagonals and then read off
as a sequence of rows. For example, to encipher the message "meet me after the toga party" with a rail fence of depth 2, we write the
following:

[Page 50]

mematrhtgpry
etefeteoaat

The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the message in a rectangle, row by row, and read
the message off, column by column, but permute the order of the columns. The order of the columns then becomes the key to the
algorithm. For example,

Key: 4312567

Plaintext: attackp
ostpone
duntilt

woamxyz
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

A pure transposition cipher is easily recognized because it has the same letter frequencies as the original plaintext. For the type of
columnar transposition just shown, cryptanalysis is fairly straightforward and involves laying out the ciphertext in a matrix and playing
around with column positions. Digram and trigram frequency tables can be useful.

The transposition cipher can be made significantly more secure by performing more than one stage of transposition. The result is a more
complex permutation that is not easily reconstructed. Thus, if the foregoing message is reencrypted using the same algorithm,

Key: 4312567
Input: ttnaapt
mtsuoao
dwcoixk
nlypetz
Output:  NSCYAUOPTTWLTMDNAOIEPAXTTOKZ



To visualize the result of this double transposition, designate the letters in the original plaintext message by the numbers designating
their position. Thus, with 28 letters in the message, the original sequence of letters is

0102030405060708091011121314
1516 17 18 19 20 21 22 23 24 25 26 27 28

[Page 51]
After the first transposition we have

0310172404 1118250209 16 23 01 08
1522051219 26 06 13 20 27 07 14 21 28

which has a somewhat regular structure. But after the second transposition, we have

170905272416 12 07 10 02 22 20 03 25
151304231914 1101 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.
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2.4. Rotor Machines

[Page 51 (continued)]

The example just given suggests that multiple stages of encryption can produce an algorithm that is significantly more difficult to

cryptanalyze. This is as true of substitution ciphers as it is of transposition ciphers. Before the introduction of@ES, the most important

application of the principle of multiple stages of encryption was a class of systems known as rotor machines:

The basic principle of the rotor machine is illustrated in . The machine consists of a set of independently rotating cylinders

B Machines based on the rotor principle were used by both Germany (Enigma) and Japan (Purple) in World War 1.

The breaking of both codes by the Allies was a significant factor in the war's outcome.

through which electrical pulses can flow. Each cylinder has 26 input pins and 26 output pins, with internal wiring that connects each input
pin to a unique output pin. For simplicity, only three of the internal connections in each cylinder are shown.

Figure 2.7. Three-Rotor Machine with Wiring Represented by Numbered Contacts
(This item is displayed on page 52 in the print version)
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If we associa ach input and output pin with a letter of the alphabet, then a single cylinder defines a monoalphabetic substitution. For
example, in , if an operator depresses the key for the letter A, an electric signal is applied to the first pin of the first cylinder and
flows through the internal connection to the twenty-fifth output pin.

Consider a machine with a single cylinder. After each input key is depressed, the cylinder rotates one position, so that the internal
connections are shifted accordingly. Thus, a different monoalphabetic substitution cipher is defined. After 26 letters of plaintext, the
cylinder would be back to the initial position. Thus, we have a polyalphabetic substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not present a formidable cryptanalytic task. The power of the rotor machine is in the use of
multiple cylinders, in which the output pins of one cylinder are connected to the input pins of the next. shows a three-cylinder

system. The left half of the figure shows a position in which the input from the operator to the first pin (plaintext letter a) is routed through
the three cylinders to appear at the output of the second pin (ciphertext letter B).

With multiple cylinders, the one closest to the operator input rotates one pin position with each keystroke. The right half of
shows the system's configuration after a single keystroke. For every complete rotation of the inner cylinder, the middle cylinder rotates
one pin position. Finally, for every complete rotation of the middle cylinder, the outer cylinder rotates one pin position. This is the same
type of operation seen with an odometer. The result is that there are 26 x 26 x 26 = 17,576 different substitution alphabets used before the
system repeats. The addition of fourth and fifth rotars results in periods of 456,976 and 11,881,376 letters, respectively. As David Kahn
eloquently put it, referring to a five-rotor machine [KAHN9{, page 413]:

[Page 53]

A period of that length thwarts any practical possibility of a straightforward solution on the basis of letter frequency.
This general solution would need about 50 letters per cipher alphabet, meaning that all five rotors would have to go
through their combined cycle 50 times. The ciphertext would have to be as long as all the speeches made on the
floor of the Senate and the House of Representatives in three successive sessions of Congress. No cryptanalyst is
likely to bag that kind of trophy in his lifetime; even diplomats, who can be as verbose as politicians, rarely scale
those heights of loquacity.

The significance of the rotor_machine today is that it points the way to the most widely used cipher ever: the Data Encryption Standard
(DES). This we examine in Chapter 3.
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2.5. Steganography

NEXT B

[Page 53 (continued)]

We conclude with a discussion of a technique that is, strictly speaking, not encryption, namely, steganography.

A plaintext message may be hidden in one of two ways. The methods of steganography conceal the existence of

the methods of cryptography render the message unintelligible to outsiders by various transformations of the text

D
| —

A simple form of steganography, but one that is time-consuming to construct, is one in which an arrangement of words or letters within an

aI message. For example, the sequence of first letters of each word of the overall message
_i

apparently innocuous text spellg

spells out the hidden message. |
the hidden message.

ne message, whereas

Janographyl was an obsolete word that was revived by David Kahn and given the meaning it has today

gure 2.4 shows an example in which a subset of the words of the overall message is used to convey

Figure 2.8. A Puzzle for Inspector Morse

(This item is displayed on page 54 in the print version)

(From The Silent World of Nicholas Quinn,by Colin Dexter)

Ird March

Dear George,

Greetings o all 2+ Oxford. Many *hanks for your
letrer and for the Summer examination package.
All Entry Forms and Fees Forms should be ready
for final despatch +o +he Syndicate by Friday
20+h or at the very latest, 'm told. by the 115
Admin has improved herey, though Yhere's room
for improvement still; just give us all ¥wo or three
more yvears and we'll really show you! Please
don' et these wretched 16+ proposals destroy
your pasis O and A pattern. Certainly this

sort of change, if implemented immediately,
would bring chaos.

Sincerely yours.




Various other techniques have been used historically; some examples are the following [MYER91]:

® Character marking: Selected letters of printed or typewritten text are overwritten in pencil. The marks are ordinarily not
visible unless the paper is held at an angle to bright light.

® |hvisible ink: A number of substances can be used for writing but leave no visible trace until heat or some chemical is
applied to the paper.

[Page 54]
® pip punctures: Small pin punctures on selected letters are ordinarily not visible unless the paper is held up in front of a light.

° Typewriter correction ribbon: Used between lines typed with a black ribbon, the results of typing with the correction tape
are visible only under a strong light.

Although these techniques may seem archaic, they have contemporary equivalents. [WAYN93] proposes hiding a message by using the
least significant bits of frames on a CD. For example, the Kodak Photo CD format's maximum resolution is 2048 by 3072 pixels, with
each pixel containing 24 bits of RGB color information. The least significant bit of each 24-bit pixel can be changed without greatly
affecting the quality of the image. The result is that you can hide a 2.3-megabyte message in a single digital snapshot. There are now a
number of software packages available that take this type of approach to steganography.

Steganography has a number of drawbacks when compared to encryption. It requires a lot of overhead to hide a relatively few bits of
information, although using some scheme like that proposed in the preceding paragraph may make it more effective. Also, once the
system is discovered, it becomes virtually worthless. This problem, too, can be overcome if the insertion method depends on some sort

of key (e.g., see Problem 2.17). Alternatively, a message can be first encrypted and then hidden using steganography.

The advantage of steganography is that it can be employed by parties who have something to lose should the fact of their secret
communication (not necessarily the content) be discovered. Encryption flags traffic as important or secret or may identify the sender or
receiver as someone with something to hide.
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2.6. Recommended Reading and Web Sites

For anyone interested in the history of code making and code breaking, the book to read [KAHN9{]. Although it is concerned more with
the impact of cryptolo its technical development, it is an excellent introduction and makes for exciting reading. Another excellent
historical account is [ISINGQ .

A short treatment covering the techniques of this chapter, ref_@. There are many books that cover classical
cryptography in a more technical vein; one of the best is [SINK66]. [KORN9{] is a delightful book to read and contains a lengthy sectign
on classical techniques. Two cryptography books that contain a fair amount of technical material on classical techniques are ]
and [NICH99]. For the truly interested reader, the two-volume [NICH9€] covers numerous classical ciphers in detail and provides many
ciphertexts to be cryptanalyzed, together with the solutions.

An excellent treatment of rotor machines, including a discussion of their cryptanalysis is found in [KUMA97].

[KATZ0(] provides a thorough treatment of steganography. Another good source is [WAYN9{].

ARD74 Gardner, M. Codes, Ciphers, and Secret Writing New York: Dover, 1972.

ARRO] Garrett, P.Making, Breaking Codes: An Introduction to Cryptology. Upper Saddle River, NJ: Prentice
Hall, 2001.

AHN9{ Kahn, D. The Codebreakers: The Story of Secret Writing. New York: Scribner, 1996.

ATZ0( Katzenbeisser, S., ed. Information Hiding Techniques for Steganography and Digital Watermarking.
Boston: Artech House, 2000.

Korner, T. The Pleasures of Counting. Cambridge, England: Cambridge University Press, 1996.
Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.

Nichols, R. Classical Cryptography Course. Laguna Hills, CA: Aegean Park Press, 1996.
Nichols, R. ed.ICSA Guide to Cryptography. New York: McGraw-Hill, 1999.

SING99 Singh, S.:The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography.
New York: Anchor Books, 1999.

SINK64 Sinkov, A.Elementary Cryptanalysis: A Mathematical Approach. Washington, DC: The Mathematical
Association of America, 1966.

AYN9[ Wayner, P. Disappearing Cryptography. Boston: AP Professional Books, 1996.

| Recommended Web Sites



® American Cryptogram Association: An association of amateur cryptographers. The Web site includes information and links
to sites concerned with classical cryptography.

[Page 56]
Crypto Corner: Simon Singh's Web site. Lots of good information, plus interactive tools for learning about cryptography.

L Steganography: Good collection of links and documents.
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[Page 56 (continued)]

2.7. Key Terms, Review Questions, and Problems

Key Terms

block ciphe

prute-force attacl

aesar ciphe

phe

iphertex

l:omputationallv securel

I:onventional encrvptiorl

ryptanalysig

ryptographic syste!

ryptography

ryptolog

Peciphering

decryptio

Enciphering

Encryptio

ill ciphe

onoalphabetic ciphe

IEHHIHIHEI

pne-time pad

plaintex
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Playfair ciphe!

Igolyalghabetic cigheJ

rail fence cipher

ingle-key encryptio

Steganography

mmetric encryptio

ransposition ciphe

anonditionally securel

igenere ciphel

Review Questions

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

What are the essential ingredients of a symmetric cipher?

What are the two basic functions used in encryption algorithms?

How many keys are required for two people to communicate via a cipher?

What is the difference between a block cipher and a stream cipher?

What are the two general approaches to attacking a cipher?

List and briefly define types of cryptanalytic attacks based on what is known to the attacker.

What is the difference between an unconditionally secure cipher and a computationally secure cipher?

Briefly define the Caesar cipher.

Briefly define the monoalphabetic cipher.

Briefly define the Playfair cipher.

What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?

What are two problems with the one-time pad?

What is a transposition cipher?



2.14 What is steganography?

Problems

2.1 A generalization of the Caesar cipher, knows as the affine Caesar cipher, has the following form: For each
plaintext letter p, substitute the ciphertext letter C:

C = E([a, b], p) = (ap + b) mod 26

[Page 57]

A basic requirement of any encryption algorithm is that it be one-to-one. That is, if p i g, then E(, p) #
E(k, g). Otherwise, decryption is impossible, because more than one plaintext character maps into the same
ciphertext character. The affine Caesar cipher is not one-to-one for all values of a. For example, fora = 2 and
b =3, then E([a, b], 0) = E(fa, b], 13) = 3.

a. Are there any limitations on the value ofb? Explain why or why not.

b. Determine which values ofa are not allowed.

c. Provide a general statement of which values ofa are and are not allowed. Justify your statement.

2.2 How many one-to-one affine Caesar ciphers are there?

2.3 A ciphertext has been generated with an affine cipher. The most frequent letter of the ciphertext is 'B', and
the second most frequent letter of the ciphertext is 'U'. Break this code.

2.4 The following ciphertext was generated using a simple substitution algorithm:

o F | sosyesasaeyb rbeoswas ] aneopssjon e |

ey 1 46889670y as5y5 | 2b(a056+2(5+- 088"

a069265))6 | &y Fradaggen1Choasoanasbrae | asiaaes | szesosres
o oaacbraaeybson 1005

Decrypt this message. Hints:

1. Asyou know, the most frequently occurring letter in English is e. Therefore, the first or second (or
perhaps third?) most common character in the message is likely to stand for e. Also, e is often
seen in pairs (e.g., meet, fleet, speed, seen, been, agree, etc.). Try to find a character in the
ciphertext that decodes to e.

2. The most common word in English is “the." Use this fact to guess the characters that stand for t



and h.
3. Decipher the rest of the message by deducing additional words.

Warning: The resulting message is in English but may not make much sense on a first reading.

25 One way to solve the key distribution problem is to use a line from a book that both the sender and the
receiver possess. Typically, at least in spy novels, the first sentence of a book serves as the key. The
particular scheme discussed in this problem is from one of the best suspense novels involving secret codes,
Talking to Strange Men, by Ruth Rendell. Work this problem without consulting that book!

Consider the following message:

SIDKHKDM AF HCRKIABIE SHIMC KD LFEAILA

This ciphertext was produced using the first sentence of The Other Side of Silence (a book about the spy
Kim Philby):

The snow lay thick on the steps and the snowflakes driven by the wind looked black in
the headlights of the cars.

A simple substitution cipher was used.
a.  What is the encryption algorithm?
b. How secure is it?

c. To make the key distribution problem simple, both parties can agree to use the first or last
sentence of a book as the key. To change the key, they simply need to agree on a new book. The
use of the first sentence would be preferable to the use of the last. Why?

2.6 In one of his cases, Sherlock Holmes was confronted with the following message.

534 C21312736314172141
DOUGLAS 109 293 5 37 BIRLSTONE

26 BIRLSTONE 9 127 171

Although Watson was puzzled, Holmes was able immediately to deduce the type of cipher. Can you?
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2.7 This problen B i (public domain). A copy is
available at ftp://shell.shore.net/members/w/s/ws/Support/Crypto/FM-31-4.pd

a. Using the two keys (memory words) cryptographic and network security, encrypt the following
message:

Be at the third pillar from the left outside the lyceum theatre tonight at seven. If you are distrustful


ftp://shell.shore.net/members/w/s/ws/Support/Crypto/FM-31-4.pdf

2.8

2.9

2.10

bring two friends.

Make reasonable assumptions about how to treat redundant letters and excess letters in the
memory words and how to treat spaces and punctuation. Indicate what your assumptions are.
Note: The message is from the Sherlock Holmes novel,The Sign of Four.

b. Decrypt the ciphertext. Show your work.

c. Comment on when it would be appropriate to use this technique and what its advantages are.

A disadvantage of the general monoalphabetic cipher is that both sender and receiver must commit the
permuted cipher sequence to memory. A common technique for avoiding this is to use a keyword from which
the cipher sequence can be generated. For example, using the keyword CIPHER, write out the keyword
followed by unused letters in normal order and match this against the plaintext letters:

plain:  abcdefghijklmnopqrstuvwxyz
cipher CIPHERABDFGJKLMNOQSTUVWXYZ

If it is felt that this process does not produce sufficient mixing, write the remaining letters on successive lines
and then generate the sequence by reading down the columns:

CIPHER
ABDFGJ
KLMNOQ
STUVWX
YZ

This yields the sequence

CAKSYIBLTZPDMUHFNVEGOWRJQX

Such a system is used in the example in (the one that begins "it was disclosed yesterday").
Determine the keyword.

When the PT-109 American patrol boat, under the command of Lieutenant John F. Kennedy, was sunk by a
Japanese destroyer, a message was received at an Australian wireless station in Playfair code:

KXJEY UREBE ZWEHE WRYTU HEYFS
KREHE GOYFI WTTTU OLKSY CAJPO
BOTEI ZONTX BYBNT GONEY CUZWR
GDSON SXBOU YWRHE BAAHY USEDQ

The key used wasroyal new zealand navy. Decrypt the message. Translate TT into tt.

a. Construct a Playfair matrix with the keylargest.

b. Construct a Playfair matrix with the key occurrence. Make a reasonable assumption about how to
treat redundant letters in the key.



211
a. Using this Playfair matrix

M F H 113 K

U N ¢} P Q

z \% w X Y

E L A R G

D S T B C
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encrypt this message:
Must see you over Cadogan West. Coming at once.

Note: The message is from the Sherlock Holmes story, The Adventure of the Bruce-Partington
Plans.

b. Repeat part (a) using the Playfair matrix from Problem 2.10a.

¢. How do you account for the results of this problem? Can you generalize your conclusion?

2.12
a. How many possible keys does the Playfair cipher have? Ignore the fact that some keys might

produce identical encryption results. Express your answer as an approximate power of 2.

b. Now take into account the fact that some Playfair keys produce the same encryption results. How
many effectively unique keys does the Playfair cipher have?

2.13 What substitution system results when we use a 25 x 1 Playfair matrix?

2.14
a. Decipher the message YITIP GWJOW FAQTQ XCSMA ETSQU SQAPU SQGKC PQTYJ using
A 1
the Hill cipher with the inverse key 2 ? . Show your calculations and the result.
b. Decipher the message MWALO LIAIW WTGBH JNTAK QZJKA ADAWS SKQKU AYARN
A )
CSODN IIAES OQKJY B using the Hill cipher with the inverse key 2 | ? . Show
your calculations and the result.
2.15

a. Encrypt the message "meet me at the usual place at ten rather than eight oclock” using the Hill

9 4
5

cipher with the key ™™ . Show your calculations and the result.



2.16

2.17

2.18

2.19

b. Show the calculations for the corresponding decryption of the ciphertext to recover the original
plaintext.

We have shown that the Hill cipher succumbs to a known plaintext attack if sufficient plaintext-ciphertext pairs
are provided. It is even easier to solve the Hill cipher if a chosen plaintext attack can be mounted. Describe
such an attack.

a b

It can be shown that the Hill cipher with the matrix ¢ ﬂr requires that (ad bc) is relatively prime to
26; that is the only common positive factor of (ad bc) and 26 is 1. Thus, if (ad bc) = 13 or is even, the matrix
is not allowed. Determine the number of different (good) keys there are for a 2 x 2 Hill cipher without counting
them one by one, using the following steps:

a. Find the number of matrices whose determinant is even because one or both rows are even. (A
row is "even" if both entries in the row are even.)

b. Find the number of matrices whose determinant is even because one or both columns are even.
(A column is "even" if both entries in the column are even.)

c. Find the number of matrices whose determinant is even because all of the entries are odd.
d. Taking into account overlaps, find the total number of matrices whose determinant is even.

e. Find the number of matrices whose determinant is a multiple of 13 because the first column is a
multiple of 13.

f.  Find the number of matrices whose determinant is a multiple of 13 where the first column is not a
multiple of 13 but the second column is a multiple of the first modulo 13.

g. Find the total number of matrices whose determinant is a multiple of 13.

h. Find the number of matrices whose determinant is a multiple of 26 because they fit case (a) and
(e). (b) and (e). (c) and (e). (a) and (f). And so on ...

i. Find the total number of matrices whose determinant is neither a multiple of 2 nor a multiple of 13.

Using the Vigeneére cipher, encrypt the word "explanation" using the keyeg.
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This problem explores the use of a one-time pad version of the Vigenére cipher. In this scheme, the key is a
stream of random numbers between 0 and 26. For example, if the key is 3 19 5 ..., then the first letter of
plaintext is encrypted with a shift of 3 letters, the second with a shift of 19 letters, the third with a shift of 5
letters, and so on.

a. Encrypt the plaintext sendmoremoney with the key stream 9017 231521141111289.

b. Using the ciphertext produced in part a, find a key so that the cipher text decrypts to the plaintext



cashnotneeded.

2.20 What is the message embedded in?

2.21 In one of Dorothy Sayers's mysteries, Lord Peter is confronted with the message shown in . He
also discovers the key to the message, which is a sequence of integers:

787656543432112343456567878878765654

3432112343456567878878765654433211234

a. Decrypt the message. Hint: What is the largest integer value?
b. If the algorithm is known but not the key, how secure is the scheme?

c. Ifthe key is known but not the algorithm, how secure is the scheme?

Figure 2.9. A Puzzle for Lord Peter

| *hough+ +o see +the fairies in the
fields, but | saw only the evil elephants
with their plack packs. Woe! how that
sight awed me! The elves danced all
around and about while | heard voices
calling clearly. Ah! how | +ried +o
see=throw off the ugly cloud=-put no plind
eye of a mortal was permitred 1o spy
them. So then came minstrels, having gold
trumpets, harps and drums. These played
very loudly beside me, breaking that spells
So the dream vanished, whereat | thanked
Heaven. | shed many tears pefore the +hin
moon rose upy frail and faint as a sickle of
straw. Now though the Enchan¥er gnash
his +teetrh vainly, vet shall he reyurn as the
Spring rerurns. Ohy wretched man! Hell
gapesy Erepus now lies open. The mouths
of Death wai* on thy end.




Programming Problems

2.22

2.23

2.24

2.25

2.26

2.27

Write a program that can encrypt and decrypt using the general Caesar cipher, also known as an additive

cipher.

Write a program that can encrypt and decrypt using the affine cipher described i .

Write a program that can perform a letter frequency attack on an additive cipher without human intervention.
Your software should produce possible plaintexts in rough order of likelihood. It would be good if your user

interface allowed the user to specify "give me the top 10 possible plaintexts".
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Write a program that can perform a letter frequency attack on any monoalphabetic substitution cipher without
human intervention. Your software should produce possible plaintexts in rough order of likelihood. It would be

good if your user interface allowed the user to specify "give me the top 10 possible plaintexts".

Create software that can encrypt and decrypt using a 2 x 2 Hill cipher.

Create software that can perform a fast known plaintext attack on a Hill cipher, given the dimension m. How

fast are your algorithms, as a function of m?

MNEXT B
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Chapter 3. Block Ciphers and the Data Encryption
Standard

lB.l Block Cipher Principles]

b.z The Data Encryption Standard

l3.3 The Strength of Desl

l3.4 Differential and Linear Cryptanalvsisl

b.s Block Cipher Design Princigleé

l3.6 Recommended Readinc]

l3.7 Key Terms, Review Questions, and Problemsl
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All the afternoon Mungo had been working on Stern's code, principally with the aid of the latest messages which
he had copied down at the Nevin Square drop. Stern was very confident. He must be well aware London Central
knew about that drop. It was obvious that they didn't care how often Mungo read their messages, so confident
were they in the impenetrability of the code.

Talking to Strange Men, Ruth Rendell

Key Points

e A is an encryption/decryption scheme in which a block of plaintext is treated as a whole and
used to produce a ciphertext block of equal length.

® Many block ciphers have a Feistel structure. Such a structure consists of a number of identical rounds of
processing. In each round, a substitution is performed on one half of the data being processed, followed by
a permutation that interchanges the two halves. The original key is expanded so that a different key is used
for each round.

® The Data Encryption Standard (DES) has been the most widely used encryption algorithm until recently. It
exhibits the classic Feistel structure. DES uses a 64-bit block and a 56-bit key.




® Two important methods of cryptanalysis are liifferential cryptanalysisl and linear cryptanalysis. DES has
been shown to be highly resistant to these two types of attack.

The objective of this chapter is to illustrate the principles of modern symmetric ciphers. For this purpose, we focus on the most widely
used symmetric cipher: the Data Encryption Standard (DES). Although numerous symmetric ciphers have been developed since the
introduction of DES, and although it is destined to be replaced by the Advanced Encryption Standard (AES), DES remains the most

important such algorithm. Further, a detailed study of DES provides an understanding of the principles used in other symmetric ciphers.
We examine other important symmetric ciphers, including AES, in andf.

This chapter begins with a discussion of the general principles of symmetric block ciphers, which are the type of symmetric ciphers
studied in this book (with the exception of the stream cipher RC4 in [Chapter ). Next, we cover full DES. Following this look at a specific
algorithm, we return to a more general discussion of block cipher design.

Compared to public-key ciphers such as RSA, the structure of DES, and most symmetric ciphers, is very complex and cannot be
explained as easily as RSA and similar algorithms. Accordingly, the reader may with to begin with a simplified version of DES, which is
described in Appendix C. This version allows the reader to perform encryption and decryption by hand and gain a good understanding of
the wing of  the algorithm details. Classroom experience indicates that a study of this simplified version enhances understanding of

DES. L

(1 However, you may safely skip Appendix C, at least on a first reading. If you get lost or bogged down in the
details of DES, then you can go back and start with simplified DES.
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[Page 64 (continued)]

3.1. Block Cipher Principles

Most symmetric block encryption algorithms in current use are based on a structure referred to as a Feistel block cipher EEIS73]. For that
reason, it is important to examine the design principles of the Feistel cipher. We begin with a comparison of stream ciphers and block
ciphers. Then we discuss the motivation for the Feistel block cipher structure. Finally, we discuss some of its implications.

Stream Ciphers and Block Ciphers

A is one that encrypts a digital data stream one bit gr one byte at a time. Examples of classical stream ciphers are the
autokeyed Vigeneére cipher and the Vernam cipher. A is one in which a block of plaintext is treated as a whole and used to

produce a ciphertext block of equal length. Typically, a block size of 64 or 128 bits is used. Using some of the modes of operation
explained in ‘, a block cipher can be used to achieve the same effect as a stream cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem applicable to a broader range of applications than stream
ciphers. The vast majority of network-based symmetric cryptographic applications make use of block ciphers. Accordingly, the concern in
this chapter, and in our discussions throughout the book of symmetric encryption, will focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a ciphertext block ofn bits. There are Zn possible different plaintext blocks
and, for the encryption to be reversible (i.e., for decryption to be possible), each must produce a unique ciphertext block. Such a
transformation is called reversible, or nonsingular. The following examples illustrate nonsingular and singular transformation forn = 2.

Reversible Mapping

Plaintext Ciphertext
00 11
01 10
10 00

11 01
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Irreversible Mapping

Plaintext Ciphertext
00 11
01 10
10 01
11 01

In the latter case, a ciphertext of 01 could have been produced by one of two plaintext blocks. So if we limit ourselves to reversible

mappings, the number of different transformations is 2",
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illustrates the logic of a general substitution cipher fom = 4. A 4-bit input produces one of 16 possible input states, which is
mapped by the substitution cipher into a unique one of 16 possible output states, each of which is represented by 4 ciphertext bits. The
encryption and decryption mappings can be defined by a tabulation, as shown in This is the most general form of block cipher
and can be used to define any reversible mapping between plaintext and ciphertext. Feistel refers to this as the ideal block cipher,
because it allows for the maximum number of possible encryption mappings from the plaintext block
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Figure 3.1. General n-bit-n-bit Block Substitution (shown with n = 4)
(This item is displayed on page 65 in the print version)
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Table 3.1. Encryption and Decryption Tables for Substitution Cipher of Eiéure 3.4
(This item is displayed on page 65 in the print version)

Plaintext Ciphertext
0000 1110
0001 0100
0010 1101
0011 0001
0100 0010
0101 1111
0110 1011
0111 1000
1000 0011
1001 1010
1010 0110
1011 1100
1100 0101
1101 1001
1110 0000
1111 0111
0000 1110
0001 0011
0010 0100
0011 1000
0100 0001
0101 1100
0110 1010
0111 1111
1000 0111
1001 1101
1010 1001
1011 0110
1100 1011
1101 0010

1110 0000




But there is a practical problem with the ideal block cipher. If a small block size, such as n = 4, is used, then the system is equivalent to a
classical substitution cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the plaintext. This weakness is not
inherent in the use of a substitution cipher but rather results from the use of a small block size. If nis sufficiently large and an arbitrary
reversible substitution between plaintext and ciphertext is allowed, then the statistical characteristics of the source plaintext are masked to
such an extent that this type of cryptanalysis is infeasible.

An arbitrary reversible substitution cipher (the ideal block cipher) for a large block size is not practical, however, from an implementation
and performance point of view. For such a transformation, the mapping itself constitutes the key. Consider again w, which defines
one particular reversible mapping from plaintext to ciphertext for n = 4. The mapping can be defined by the entries in the second column,
which show the value of the ciphertext for each plaintext block. This, in essence, is the key that determines the specific mapping from
among all possible mappings. In this case, using this straightforward method of defining the key, the required key length is (4 bits) x (16

rows) = 64 bits. In general, for an n-bit ideal block cipher, the length of the key defined in this fashion isn x 2n bits. For a 64-bit block, which
. . . . . 64 _ 70 tmmp . 21

is a desirable length to thwart statistical attacks, the required key length is 64 x 2~ " =2 10 bits.

In considering these difficulties, Feistel points o Iflft ﬁhat is needed is an approximation to the ideal block cipher system for large n, built
up out of components that are easily realizable HFEIS? . But before turning to Feistel's approach, let us make one other observation. We
could use the general block substitution cipher but, to make its implementation tractable, confine ourselves to a subset of the possible

reversible mappings. For example, suppose we define the mapping in terms of a set of linear equations. In the case of n = 4, we have

y1 =Kk11x1+k12x2 + k13x3 + k14x4
y2  =k21x1 + k22x2 + k23x3 + k24x4
y3  =k31x1 + k32x2 + k33x3 + k34x4

y4  =Kk41x1 + k42x2 + ka3x3 + k44x4

where the xj are the four binary digits of the plaintext block, they;j are the four binary digits of the ciphertext block, thekij are the binary
coefficients, and arithmetic is mod 2. The key size is just n2, in this case 16 bits. The danger with this kind of formulation is that it may be

vulnerable to cryptanalysis by an attacker that is aware of the structure of the algorithm. In this_example, what we have is essentially the
Hill cipher discussed in , applied to binary data rather than characters. As we saw i , a simple linear system such as
this is quite vulnerable.
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The Feistel Cipher

Feistel proposed EEIS73] that we can approximate the ideal block cipher by utilizing the concept of aproduct cipher, which is the
execution of two or more simple ciphers in sequence in such a way that the final result or product is cryptographically stronger than any of
the component ciphers. The essence of the approach is to develop a block cipher with a key length of k bits and a block length ofn bits,

allowing a total of 2k possible transformations, rather than the ?! transformations available with the ideal block cipher.

proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion functions [EHAN4d]. We look next at
these concepts of diffusion and confusion and then present the Feistel cipher. But first, it is worth commenting on this remarkable fact: The
Feistel cipher structure, which dates back over a quarter century and which, in turn, is based on Shannon's proposal of 1945, is the
structure used by many significant symmetric block ciphers currently in use.

In particular, Feistel proposed the use of a cipher that alternates substitutions and permutations. In fact, thctical application of a



Diffusion and Confusion

The terms diﬁusiond confusion were introduced by Claude Shannon to capture the two basic building blocks for any cryptographic
2

system [ .~ Shannon's concern was to thwart cryptanalysis based on statistical analysis. The reasoning is as follows. Assume
the attacker has some knowledge of the statistical characteristics of the plaintext. For example, in a human-readable message in some
language, the frequency distribution of the various letters may be known. Or there may be words or phrases likely to appear in the
message (probable words). If these statistics are in any way reflected in the ciphertext, the cryptanalyst may be able to deduce the
encryption key, or part of the key, or at least a set of keys likely to contain the exact key. In what Shannon refers to as a strongly ideal
cipher, all statistics of the ciphertext are independent of the particular key used. The arbitrary substitution cipher that we discussed
previously () is such a cipher, but as we have seen, is impractical.

2l Shannon's 1949 paper appeared originally as a classified report in 1945. Shannon enjoys an amazing and unique
position in the history of computer and information science. He not only developed the seminal ideas of modern
cryptography but is also responsible for inventing the discipline of information theory. In addition, he founded
another discipline, the application of Boolean algebra to the study of digital circuits; this last he managed to toss off
as a master's thesis.

Qther than recourse to ideal systems, Shannon suggests two methods for frustrating statistical cryptanalysis: diffusion and confusion. In
the statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext. This is achieved by having each
plaintext digit affect the value of many ciphertext digits; generally this is equivalent to having each ciphertext digit be affected by many
plaintext digits. An example of diffusion is to encrypt a message M = m1, m2, m3,... of characters with an averaging operation:

k
Yo = | D m,4;) mod 26
=

adding k successive letters to get a ciphertext letteryn. One can show that the statistical structure of the plaintext has been dissipated.

Thus, the letter frequencies in  the ciphertext will be more nearly equal than in the plaintext; the digram frequencies will also be more

nearly equal, and so on. In a binary block cipher, diffusion can be achieved by repeatedly performing some permutation on the data

followed by applying anction to that permutation; the effect is that bits from different positions in the original plaintext contribute to a
3

single bit of ciphertext.

Bl Some books on cryptography equate permutation with diffusion. This is incorrect. Permutationby itself, does not
change the statistics of the plaintext at the level of individual letters or permuted blocks. For example, in DES, the
permutation swaps two 32-bit blocks, so statistics of strings of 32 bits or less are preserved.
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Every block cipher involves a transformation of a block of plaintext into a block of ciphertext, where the transformation depends on the
key. The mechanism of diffusion seeks to make the statistical relationship between the plaintext and ciphertext as complex as possible in
order to thwart attempts to deduce the key. On the other hand, seeks to make the relationship between the statistics of the
ciphertext and the value of the encryption key as complex as possible, again to thwart attempts to discover the key. Thus, even if the
attacker can get some handle on the statistics of the ciphertext, the way in which the key was used to produce that ciphertext is so
complex as to make it difficult to deduce the key. This is achieved by the use of a complex substitution algorithm. In contrast, a simple
linear substitution function would add little confusion.

As [ROBS95H] points out, so successful are diffusion and confusion in capturing the essence of the desired attributes of a block cipher that
they have become the cornerstone of modern block cipher design.



Feistel Cipher Structure

depicts the structure proposed by Feistel. The inputs to the encryption algorithm are a plaintext block of length& bits and a key
K. The plaintext block is divided into two halves,Lg and RQ. The two halves of the data pass throughn rounds of processing and then

combine to produce the ciphertext block. Each round i has as inputsLi-1 and Rj-1, derived from the previous round, as well as a subkej,
derived from the overall K. In general, the subkeysK;| are different fromK and from each other.

Figure 3.2. Classical Feistel Network
(This item is displayed on page 69 in the print version)
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All rounds have the same structure. A substitution is performed on the left half of the data. This is done by applying around function F to
the right half of the data and then taking the exclusive-OR of the output of that function and the left half of the data. The round function has
the same general structure for each round but is parameterized by the round subkey Kj. Following this substitution, a permutation is

performed that consists of the interchange of the two halves of the data. 4 This structure is a particular form of the
substitution-permutation network (SPN) proposed by Shannon.

[l The final round is followed by an interchange that undoes the interchange that is part of the final round. One
could simply leave both interchanges out of the diagram, at the sacrifice of some consistency of presentation. In any
case, the effective lack of a swap in the final round is done to simplify the implementation of the decryption process,
as we shall see.

The exact realization of a Feistel network depends on the choice of the following parameters and design features:

® Bjock size: Larger block sizes mean greater security (all other things being equal) but reduced encryption/decryption speed for
a given algorithm. The greater security is achieved by greater diffusion Traditionally, a block size of 64 bits has ~ been
considered a reasonable tradeoff and was nearly universal in block cipher design. However, the new AES uses a 128-bit block

size.
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® Key size: Larger key size means greater security but may decrease encryption/decryption speed. The greater security is
achieved by greater resistance to brute-force attacks and greater confusion. Key sizes of 64 bits or less are now widely
considered to be inadequate, and 128 bits has become a common size.

® Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds
offer increasing security. A typical size is 16 rounds.

® gy bkey generation algorithm: Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis.
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® Round function: Again, greater complexity generally means greater resistance to cryptanalysis.
There are two other considerations in the design of a Feistel cipher:

® ast software encryption/decryption: In many cases, encryption is embedded in applications or utility functions in such a
way as to preclude a hardware implementation. Accordingly, the speed of execution of the algorithm becomes a concern.

® Easeof analysis: Although we would like to make our algorithm as difficult as possible to cryptanalyze, there is great benefit in
making the algorithm easy to analyze. That is, if the algorithm can be concisely and clearly explained, it is easier to analyze that
algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength. DES, for example,
does not have an easily analyzed functionality.

Feistel Decryption Algorithm

The process of decryption with a Feistel cipher is essentially the same as the encryption process. The rule is as follows: Use the ciphertext
as input to the algorithm, but use the subkeys Kj in reverse order. That is, use Kn in the first round, Kn-1 in the second round, and so on
until K1 is used in the last round. This is a nice feature because it means we need not implement two different algorithms, one for
encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct result, consider , which shows the encryption
process going down the left-hand side and the decryption process going up the right-hand side for a 16-round algorithm (the result would
be the same for any number of rounds). For clarity, we use the notation LEj and RE;j for data traveling through the encryption algorithm and
LDi and RO for data traveling through the decryption algorithm. The diagram indicates that, at every round, the intermediate value of the
decryption process is equal to the corresponding value of the encryption process with the two halves of the value swapped. To put this
another way, let the output of the ith encryption round be LEj||RE; (Lj concatenated with Rj). Then the corresponding input to the (16i)th
decryption round is RE;j||LE;j or, equivalently, RD16-i||LD16-i.

Figure 3.3. Feistel Encryption and Decryption
(This item is displayed on page 71 in the print version)
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Let us walk through to demonstrate the validity of the preceding assertions After the last iteration of the encryption process,
the two halves of the output are swapped, so that the ciphertext is RE16||LE16. The output of that round is the ciphertext. Now take that
ciphertext and use it as input to the same algorithm. The input to the first round is RE16||LE16, which is equal to the 32-bit swap of the
output of the sixteenth round of the encryption process.

Bl 1o simplify the diagram, it is untwisted, not showing the swap that occurs at the end of each iteration. But please

note that the intermediate result at the end of the ith stage of the encryption process is the 2v-bit quantity formed by
concatenating LEj and RE;, and that the intermediate result at the end of thdth stage of the decryption process is the
2w-bit quantity formed by concatenatingLDj and RD.
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Now we would like to show that the output of the first round of the decryption process is equal to a 32-bit swap of the input to the sixteenth
round of the encryption process. First, consider the encryption process. We see that

LE16 = RE15

RE16 = LE15 x F(RE15, K16)

[Page 72]
On the decryption side,
LD1 =RD0=LE16 = RE15
RD1 = LDo x F(RDg, K16)
= RE16 x F(RE15, K16)
= [LE15 x F(RE15, K16)] x F(RE15, K16)
The XOR has the following properties:
[AxB] xC=Ax[BxC]
DxD=0
ExO0=E

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first round of the decryption process is LE5||RE15, which is the
32-bit swap of the input to the sixteenth round of the encryption. This correspondence holds all the way through the 16 iterations, as is
easily shown. We can cast this process in general terms. For the ith iteration of the encryption algorithm,

LEj = REj-1
RE;j =LEj-1 x F(REi-1, Kj)
Rearranging terms,
REij-1 = LEj

LEi-1 = REj X F(REj-1, Ki2 = REj X F(LEj, Ki)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and these equations confirm the assignments shown in

the right-hand side of .

Finally, we see that the output of the last round of the decryption process is REQ||LEQ. A 32-bit swap recovers the original plaintext,

demonstrating the validity of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To see this, take a limiting case in which F produces a constant
output (e.g., all ones) regardless of the values of its two arguments. The equations still hold.

K==1 ExT
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[Page 72 (continued)]

3.2. The Data Encryption Standard

The most widely used encryption scheme is based on the Data Encryption Standard (DES) adopted in 1977 by the National Bureau of
Standards, now the National Institute of Standards and Technology (NIST), aséederal Information Processing Standard 46 (FIPS PUB

46). The algorithm itself is referred to as the Data Encryption Algorithm (DEA).= For DES, data are encrypted in 64-bit blocks using a
56-bit key. The algorithm transforms 64-bit input in a series of steps into a 64-bit output. The same steps, with the same key, are used to
reverse the encryption.

61 The terminology is a bit confusing. Until recently, the termdES and DEA could be used interchangeably.
However, the most recent editiog ff Ilf E,ES document includes a specification of the DEA described here plus the
triple DEA (TDEA) described in Chapter §. Both DEA and TDEA are part of the Data Encryption Standard. Further,
until the recent adoption of the official term TDEA, the triple DEA algorithm was typically referred to adriple DES and
written as 3DES. For the sake of convenience, we use the term 3DES.
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The DES enjoys widespread use. It has also been the subject of much controversy concerning how secure the DES is. To appreciate the
nature of the controversy, let us quickly review the history of the DES.

In the late 1960s, IBM set up a research project in computer aphy led by Horst Feistel. The project concluded in 1971 with the
development of an algorithm with the designation LUCIFER [EEIS7J], which was sold to Lloyd's of London for use in a cash-dispensing
system, also developed by IBM. LUCIFER is a Feistel block cipher that operates on blocks of 64 bits, using a key size of 128 bits.
Because of the promising results produced by the LUCIFER project, IBM embarked on an effort to develop a marketable commercial
encryption product that ideally could be implemented on a single chip. The effort was headed by Walter Tuchman and Carl Meyer, and it
involved not only IBM researchers but also outside consultants and technical advice from NSA. The outcome of this effort was a refined
version of LUCIFER that was more resistant to cryptanalysis but that had a reduced key size of 56 bits, to fit on a single chip.

In 1973, the National Bureau of Standards (NBS) issued a request for proposals for a national cipher standard. IBM submitted the results
of its Tuchman-Meyer project. This was by far the best algorithm proposed and was adopted in 1977 as the Data Encryption Standard.

Before its adoption as a standard, the proposed DES was subjected to intense criticism, which has not subsided to this day. Two areas
drew the critics' fire. First, the key length in IBM's original LUCIFER algorithm was 128 bits, but that of the proposed system was only 56
bits, an enormous reduction in key size of 72 bits. Critics feared that this key length was too short to withstand brute-force attacks. The
second area of concern was that the design criteria for the internal structure of DES, the S-boxes, were classified. Thus, users could not
be sure that the internal structure of DES was free of any hidden weak points that would enable NSA to decipher messages without benefit
of the key. Subsequent events, particularly the recent work on differential cryptanalysis, seem to indicate that DES has a very strong
internal structure. Furthermore, according to IBM patrticipants, the only changes that were made to the proposal were changes to the
S-boxes, suggested by NSA, that removed vulnerabilities identified in the course of the evaluation process.

Whatever the merits of the case, DES has flourished and is widely used, especially in financial applications. In 1994, NIST reaffirmed DES
for federal use for another five years; NIST recommended the use of DES for applications other than the protection of classified
information. In 1999, NIST issued a new version of its standard (FIPS PUB 46-3) that indicated that DES should only be used for legacy
systems and that triple DES (which in essence involves repeating the DES algorithm three times on the plaintext using two or three
different keys to produce the ciphertext) be used. We study triple DES in . Because the underlying encryption and decryption
algorithms are the same for DES and triple DES, it remains important to understand the DES cipher.
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DES Encryption

The overall scheme for DES encryption is illustrated in . As with any encryption scheme, there are two inputs to the encryn

function: the plaintext to be encrypted and the key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in leng 7

7] Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the other 8 bits
can be used as parity bits or simply set arbitrarily.
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Figure 3.4. General Depiction of DES Encryption Algorithm
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Looking at the left-hand side of the figure, we can see that the processing of the plaintext proceeds in three phases. First, the 64-bit
plaintext passes through an initial permutation (IP) that rearranges the bits to produce the permuted input. This is followed by a phase
consisting of 16 rounds of the same function, which involves both permutation and substitution functions. The output of the last (sixteenth)
round consists of 64 bits that are a function of the input plaintext and the key. The left and right halves of the output are swapped to

produce the preoutput. Finally, the preoutput is passed through a permutation (||51) that is the inverse of the initial permutation function, to
produce the 64-bit ciphertext. With the exception of the initial and final permutations, DES has the exact structure of a Feistel cipher, as

shown in Figure 3.4.

The right-hand portion of shows the way in which the 56-bit key is used. Initially, the key is passed through a permutation
function. Then, for each of the 16 rounds, a subkey (Ki) is produced by the combination of a left circular shift and a permutation. The

permutation function is the same for each round, but a different subkey is produced because of the repeated shifts of the key bits.

Initial Permutation

The initial permutation and its inverse are defined by tables, as shown in [Tables 3.2 and , respectively. The tables are to be
interpreted as follows. The input to a table consists of 64 bits numbered from 1 to 64. The 64 entries in the permutation table contain a
permutation of the numbers from 1 to 64. Each entry in the permutation table indicates the position of a numbered input bit in the output,

which also consists of 64 bits.



Table 3.2. Permutation Tables for DES

(This item is displayed on page 76 in the print version)
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(a) Initial Permutation (IP)

34 26
36 28
38 30
40 32
33 25
35 27
37 29
39 31

(b) Inverse Initial Permutation (IP])

16 56
15 55
14 54
13 53
12 52
11 51
10 50

9 49

(c) Expansion Permutation (E)

2 3
6 7
10 11
14 15
18 19
22 23
26 27
30 31
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(a) Initial Permutation (IP)

19 13 30 6 22 11 4 25

To see that these two permutation functions are indeed the inverse of each other, consider the following 64-bit input M:

M1 M2 M3 M4 M5 M6 M7 M8

M9 M10 M11 M12 M13 M14 M15 M16
M17 M18 M19 M20 M21 M22 M23 M24
M25 M26 M27 M28 M29 M30 M31 M32
M33 M34 M35 M36 M37 M38 M39 M40
M41 M42 M43 M44 M45 M46 M47 M4s8
M49 M50 Ms51 M52 Ms53 M54 M55 Ms56
M57 M58 Ms59 M60 M61 M62 M63 M64

where Mij is a binary digit. Then the permutationX = IP(M) is as follows:

M58 M50 M42 M34 M26 M18 M10 M2
M60 M52 Ma4q M36 M28 M20 M12 M4
M62 M54 M46 M38 M30 M22 M14 Me
M64 Ms56 M48 M40 M32 M24 M16 Mg
M57 M49 M41 M33 M25 M17 M9 M1
M59 M51 M43 M35 M27 M19 M11 M3
M61 Ms53 Mas5 M37 M29 M21 M13 M5
M63 M55 M47 M39 M31 M23 M15 M7

If we then take the inverse permutation Y = IP'l(X) = IP_l(IP(M)), it can be seen that the original ordering of the bits is restored.

Details of Single Round

shows the internal structure of a single round. Again, begin by focusing on the left-hand side of the diagram. The left and right
halves of each 64-bit intermediate value are treated as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel



cipher, the overall processing at each round can be summarized in the following formulas:

[Page 76]
Li = Rj-1

Ri = Li-1 X FRi-1, Ki)

[Page 77]

Figure 3.5. Single Round of DES Algorithm
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The round keyK; is 48 bits. The R input is 32 bits. ThisR input is first expanded to 48 bits by using a table that defines a permutation plus
able 3.2q). The resulting 48 bits are XORed withKj. This 48-bit result passes
through a substitution function that produces a 32-bit output, which is permuted as defined by [Table 3.2d.

an expansion that involves duplication of 16 of the R bits (

The role of the S-boxes in the function F is illustrated in . The substitution consists of a set of eight S-boxes, each of which



accepts 6 bits as input and produces 4 bits as output. These transformations are defined in , which is interpreted as follows: The
first and last bits of the input to box Sj form a 2-bit binary number to select one of four substitutions defined by the four rows in the table for
Si. The middle four bits select one of the sixteen columns. The decimal value in the cell selected by the row and column is then converted
to its 4-bit representation to produce the output. For example, in S1 for input 011001, the row is 01 (row 1) and the column is 1100 (column

12). The value in row 1, column 12 is 9, so the output is 1001.

Figure 3.6. Calculation of F(R, K)
(This item is displayed on page 78 in the print version)
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Table 3.3. Definition of DES S-Boxes
(This item is displayed on page 79 in the print version)
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Each row of an S-box defines a general reversible substitution. may be useful in understanding the mapping. The figure shows
the substitution for row 0 of box S1.

The operation of the S-boxes is worth further comment. Ignore for the moment the contribution of the key (Kj). If you examine the
expansion table, you see that the 32 bits of input are split into groups of 4 bits, and then become groups of 6 bits by taking the outer bits
from the two adjacent groups. For example, if part of the input word is

[Page 78]
... efgh ijkl mnop ...
this becomes
... defghi hijklm Imnopq ...

The outer two bits of each group select one of four possible substitutions (one row of an S-box). Then a 4-bit output value is substituted for
the particular 4-bit input (the middle four input bits). The 32-bit output from the eight S-boxes is then permuted, so that on the next round
the output from each S-box immediately affects as many others as possible.

Key Generation

Returning to and @ we see that a 64-bit key is used as input to the algorithm. The bits of the key are numbered from 1
through 64; every eighth bit is ignored, as indicated py the lack of shading in The key is first subjected to a permutation
governed by a table labeled Permuted Choice One . The resulting 56-bit key is then treated as two 28-bit quantities, labeledCo
and Do. At each round, Cj-1 and Dj-1 are separately subjected to a circular left shift, or rotation, of 1 or 2 bits, as governed b.
These shifted values serve as input to the next round. They also serve as input to Permuted Choice Two (l able 3.4d), which produces a
48-bit output that serves as input to the function F(Ri-1, Ki).

[Page 80]
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Table 3.4. DES Key Schedule Calculation
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DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the application of the subkeys is reversed.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either the plaintext or the key should produce a significant
change in the ciphertext. In particular, a change in one bit of the plaintext or one bit of the key should produce a change in many bits of the
ciphertext. If the change were small, this might provide a way to reduce the size of the plaintext or key space to be searched.

[Page 81]

DES exhibits a strong avalanche effect shows some results taken from kONH8:IJ]. In |'I'ab|e 3.5&1, two plaintexts that differ by one
bit were used:

00000000 00000000 00000000 00000000 00000000 0OO00000 00000000 00000000

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

with the key

0000001 1001011 0100100 1100010 0011100 0011000 0011100 0110010



Table 3.5. Avalanche Effect in DES

(a) Change in Plaintext (b) Change in Key
Round Number of bits that differ Round Number of bits that differ
0 1 0 0
1 6 1 2
2 21 2 14
3 35 3 28
4 39 4 32
5 34 5 30
6 32 6 32
7 31 7 35
8 29 8 34
9 42 9 40
10 44 10 38
11 32 11 31
12 30 12 33
13 30 13 28
14 26 14 26
15 29 15 34
16 34 16 35

The [Table 3.54 shows that after just three rounds, 21 bits differ between the two blocks. On completion, the two ciphertexts differ in 34 bit
positions.

able 3.5Hshows a similar test in which a single plaintext is input:

01101000 10000101 00101111 01111010 00010011 01110110 11101011 10100100
with two keys that differ in only one bit position:

1110010 1111011 1101111 0011000 0011101 0000100 0110001 11011100

0110010 1111011 1101111 0011000 0011101 0000100 0110001 11011100

Again, the results show that about half of the bits in the ciphertext differ and that the avalanche effect is pronounced after just a few rounds.

& prcy | wexT
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3.3. The Strength of Des

Since its adoption as a federal standard, there have been lingering concerns about the level of security provided by DES. These
concerns, by and large, fall into two areas: key size and the nature of the algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2 x 1016. Thus, on the face of it, a brute-force attack
appears impractical. Assuming that, on average, half the key space has tq hed, a single machine performing one DES
encryption per microsecond would take more than a thousand years (see [Table 2.9) to break the cipher.

However, the assumption of one encryption per microsecond is overly conservative. As far back as 1977, Diffie and Hellman postulated
that the technoglogy existed to build a parallel machine with 1 million encryption devices, each of which could perform one encryption per
microsecond . This would bring the average search time down to about 10 hours. The authors estimated that the cost would be
about $20 million in 1977 dollars.

DES finally and definitively proved insecure in July 1998, when the Electronic Frontier Foundation (EFF) announced that it had broken a
DES encryption using a special-purpose "DES cracker" machine that was built for less than $250,000. The att k less than three
days. The EFF has published a detailed description of the machine, enabling others to build their own cracker [EFF94

{I. And, of course,
hardware prices will continue to drop as speeds increase, making DES virtually worthless.

It is important to note that there is more to a key-search attack than simply running through all possible keys. Unless known plaintext is
provided, the analyst must be able to recognize plaintext as plaintext. If the message is just plain text in English, then the result pops out
easily, although the task of recognizing English would have to be automated. If the text message has been compressed before
encryption, then recognition is more difficult. And if the message is some more general type of data, such as a numerical file, and this
has been compressed, the problem becomes even more difficult to automate. Thus, to supplement the brute-force approach, some
degree of knowledge about the expected plaintext is needed, and some means of automatically distinguishing plaintext from garble is
also needed. The EFF approach addresses this issue as well and introduces some automated techniques that would be effective in
many contexts.

Fortunately, there are a number of alternatives to DES, the most important of which are AES and triple DES, discussed in
and B respectively.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics of the DES algorithm. The focus of
concern has been on the eight substitution tables, or S-boxes, that are used in each iteration. Because the design criteria for these
boxes, and indeed for the entire algorithm, were not made public, there is a suspicion that the boxes were constructed in such a way that
cryptanalysis is possible for an opponent who knows the weaknesses in the S-boxes. This assertion is tantalizing, and over the years
a number of regularities and unexpected behaviors of the Sxes have been discovered. Despite this, no one has so far succeeded in

discovering the supposed fatal weaknesses in the S-boxes.



(8] At least, no one has publicly acknowledged such a discovery.
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Timing Attacks

We discuss timing attacks in more detail in Part Two, as they relate to public-key algorithms. However, the issue may also be relevant for
symmetric ciphers. In essence, a timing attack is one in which information about the key or the plaintext is obtained by observing how
long it takes a given implementation to perform decryptions on various ciphertexts. A timing attack exploits the fact that an encryption or
decryption algorithm often takes slightly different amounts of time on different inputs. [HEVI99] reports on an approach that yields the
Hamming weight (number of bits equal to one) of the secret key. This is a long way from knowing the actual key, but it is an intriguing
first step. The authors conclude that DES appears to be fairly resistant to a successful timing attack but suggest some avenues to
explore. Although this is an interesting line of attack, it so far appears unlikely that this technique will ever be successful against DES or
more powerful symmetric ciphers such as triple DES and AES.

" prey NEXT
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[Page 83 (continued)]

3.4. Differential and Linear Cryptanalysis

For most of its life, the prime concern with DES has been its vulnerability to brute-force attack because of its relatively short (56 bits) key
length. However, there has also been interest in finding cryptanalytic attacks on DES. With the increasing popularity of block ciphers with
longer key lengths, including triple DES, brute-force attacks have become increasingly impractical. Thus, there has been increased
emphasis on cryptanalytic attacks on DES and other symmetric block ciphers. In this section, we provide a brief overview of the two most
powerful and promising approaches: differential cryptanalysis and linear cryptanalysis.

Differential Cryptanalysis

One of the most significant advances in cryptanalysis in recent years is differential cryptanalysis. In this section, we discuss the technique
and its applicability to DES.

History

Differential cryptanalysis was not reported in the open literature until 1990. The first published effort appears to have been the cryptanalysis
of a block cipher called FEAL by Murphy [MURP9(]. This was followed by a number of papers by Biham an r, who demonstrated
this form of attack on a variety of encryption algorithms and hash functions; their results are summarized in [BIHA9J].

The most publicized results for this approach have been those that have application to DES. Differential cryptanalysis is the first published
. . . 55 . . -

attack that is capable of breaking DES in less than 27~ complexity. The scheme, as reported in BIHA93], can successfully cryptanalyze

DES with an effort on the order of 247 encryptions, requiring 247 chosen plaintexts. Although 247 is certainly significantly less than 255 the

need for the adversary to find 247 chosen plaintexts makes this attack of only theoretical interest.

[Page 84]

Although differential crypff fj is a powerful tool, it does not do very well against DES. The reason, according to a member of the IBM
team that designed DES [COPP94], is that differential cryptanalysis was known to the team as early as 1974. The need to strengthen DES
against attacks using differential cryptanalysis played a large part in the design of the S-boxes and the permutation P. As evidence of the
impact of these changes, consider these comparable results reported in [BIHA9J]. Differential cryptanalysis of an eight-round LUCIFER

algorithm requires only 256 chosen plaintexts, whereas an attack on an eight-round version of DES requires 214 chosen plaintexts.

Differential Cryptanalysis Attack

The differential cryptanalysis attack is complex; [BIHA9J] provides a complete description. The rationale behind differential cryptanalysis is
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to observe the behavior of pairs of text blocks evolving along each round of the cipher, instead of observing the evolution of a single text
block. Here, we provide a brief overview so that you can get the flavor of the attack.

We begin with a change in notation for DES. Consider the original plaintext block m to consist of two halvesmo,m1. Each round of DES
maps the right-hand input into the left-hand output and sets the right-hand output to be a function of the left-hand input and the subkey for

this round. So, at each round, only one new 32-bit block is created. If we label each new block m1(2 == | == 17), then the intermediate
message halves are related as follows:

mij+1 = mj-1 $f(mi, Ki),i=1,2,..,16

In differential cryptanalysis, we start with two messages, m and m', with a known XOR differenceDm = m $ m', and consider the

diference between the intermediate message halves: mi = mi & mi Then e have:
Amiyy = My @ My
= |mi—y @ f(m;, K;)] ® [mi- @ t(m;, Kj)]
= Amy— @ [f(my, Ki) @ f(my, Ki))

Now, suppose that many pairs of inputs to f with the same difference yield the same output difference if the same subkey is used. To put
this more precisely, let us say that X may cause Y with probability p, if for a fractionp of the pairs in which the input XOR isX, the output
XOR equals Y. We want to suppose that there are a number of values o that have high probability of causing a particular output
difference. Therefore, if we know Dmij-1 and Dmj with high probability, then we knowDmij+1 with high probability. Furthermore, if a number
of such differences are determined, it is feasible to determine the subkey used in the function f.

The overall strategy of differential cryptanalysis is based on these considerations for a single round. The procedure is to begin with two
plaintext messages m and m' with a given difference and trace through a probable pattern of differences after each round to yield a
probable difference for the ciphertext. Actually, there are two probable patterns of differences for the two 32-bit halves: (Dm17||[m16). Next,
we submit m and m' for encryption to determine the actual difference under the unknown key and compare the result to the probable
difference. If there is a match,

E(K, m) $ E(K, m") = (Dm17||m16)
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then we suspect that all the probable patterns at all the intermediate rounds are correct. With that assumption, we can make some
deductions about the key bits. This procedure must be repeated many times to determine all the key bits.

, based on a figure in BIHA9Y], illustrates the propagation of differences through three rounds of DES. The probabilities shown on
the right refer to the probability that a given set of intermediate differences will appear as a function of the input differences. Overall, after
three rounds the probability that the output difference is as shown is equal to 0.25 x 1 x 0.25 = 0.0625.

Figure 3.7. Differential Propagation through Three Round of DES (numbers in hexadecimal)

Am; | Am; = 40 08 00 00 04 00 00 00 j
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e —————_
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Linear Cryptanalysis

A more recent development is linear cryptanalysis, described in [MATS9J]. This attack is based on finding linear approximations to describe

the transformations performed in DES. This method can find a DES key given 243 known plaintexts, as compared to 247 chosen plaintexts
for differential cryptanalysis. Although this is a minor improvement, because it may be easier to acquire known plaintext rather than
chosen plaintext, it still leaves linear cryptanalysis infeasible as an attack on DES. So far, little work has been done by other groups to



validate the linear cryptanalytic approach.
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We now give a brief summary of the principle on which linear cryptanalysis is based. For a cipher with n-bit plaintext and ciphertext blocks
and an m-bit key, let the plaintext block be labeled P[1], ... Pf], the cipher text block C[1], ... C[n], and the key K[1], ... Kfn]. Then define

Ali,j, ..., Kl = Ali] $A[j] $ $A[k]

The objective of linear cryptanalysis is to find an effectivelinear equation of the form:

Pla, a2, ..., ag] @ Clb1, b2, ..., b] = K[g1, 92, ..., gc]
N A

(where x=0o0r1; 1== g b == n 1 === c == m, and where thea, b and g terms represent fixed, unique bit locations) that holds with

probability p i 0.5. The furtherp is from 0.5, the more effective the equation. Once a proposed relation is determined, the procedure is to
compute the results of the left-hand side of the preceding equation for a large number of plaintext-ciphertext pairs. If the result is 0 more
than half the time, assume K[g1, g2, ..., gc] = 0. If it is 1 most of the time, assume Kd1, g2, ..., gc] = 1. This gives us a linear equation on the
key bits. Try to get more such relations so that we can solve for the key bits. Because we are dealing with linear equations, the problem can
be approached one round of the cipher at a time, with the results combined.

=2 wEXT
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[Page 86 (continued)]

3.5. Block Cipher Design Principles

Although much progress has been made in designing block ciphers that are cryptographically strong, the basic principles have not
changed all that much since the work of Feistel and the DES design team in the early 1970s. It is useful to begin this discussion by
looking at the published design criteria used in the DES effort. Then we look at three critical aspects of block cipher design: the number
of rounds, design of the function F, and key scheduling.

DES Design Criteria

The criteria used in the design of DES, as reported in [COPP94], focused on the design of the S-boxes and on the P function that takes
the output of the S boxes (). The criteria for the S-boxes are as follows:

1. No output bit of any S-box should be too close a linear function of the input bits. Specifically, if we select any output bit and
any subset of the six input bits, the fraction of inputs for which this output bit equals the XOR of these input bits should not be
close to 0 or 1, but rather should be near 1/2.

2. Each row of an S-box (determined by a fixed value of the leftmost and rightmost input bits) should include all 16 possible
output bit combinations.

3. Iftwo inputs to an S-box differ in exactly one bit, the outputs must differ in at least two bits.
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4. If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in at least two bits.

5. If two inputs to an S-box differ in their first two bits and are identical in their last two bits, the two outputs must not be the
same.

6. For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs exhibiting that difference may result
in the same output difference.

7. This is a criterion similar to the previous one, but for the case of three S-boxes.

Coppersmith pointed out that the first criterion in the preceding list was needed because the S-boxes are the only nonlinear part of DES.
If the S-boxes were linear (i.e., each output bit is a linear combination of the input bits), the entire algorithm would be linear and easily
broken. We have seen this phenomenon with the Hill cipher, which is linear. The remaining criteria were primarily aimed at thwarting
differential cryptanalysis and at providing good confusion properties.

The criteria for the permutation P are as follows:

1. The four output bits from each S-box at round i are distributed so that two of them affect (provide input for) "middle bits" of
round (i + 1) and the other two affect end bits. The two middle bits of input to an S-box are not shared with adjacent S-boxes.
The end bits are the two left-hand bits and the two right-hand bits, which are shared with adjacent S-boxes.

2. The four output bits from each S-box affect six different S-boxes on the next round, and no two affect the same S-box.

3. For two S-boxesj, k, if an output bit from § affects a middle bit of & on the next round, then an output bit from & cannot affect



a middle bit of Sj. This implies that forj = k, an output bit from § must not affect a middle bit of §

These criteria are intended to increase the diffusion of the algorithm.

Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the design: the number of rounds, the function F, and the key
schedule algorithm. Let us look first at the choice of the number of rounds.

The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a relatively weak F. In general, the criterion
should be that the number of rounds is chosen so that known cryptanalytic efforis require greater effort than a simple brute-force key
search attack. This criterion was certainly used in the design of DES. Schneier [ECHN9{] observes that for 16-round DEE differential

cryptanalysis attack is slightly less efficient than brute force: the differential cryptanalysis attack requires 255'1 operations,— whereas

brute force requires 255. If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than brute-force key search.

[ Recall that differential cryptanalysis of DES requires 47 chosen plaintext. If all you have to work with is known
plaintext, then you must sort through a large quantity of known plaintext-ciphertext pairs looking for the useful

ones. This brings the level of effort up to 2551,

This criterion is attractive because it makes it easy to judge the strength of an algorithm and to compare different algorithms. In the
absence of a cryptanalytic breakthrough, the strength of any algorithm that satisfies the criterion can be judged solely on key length.
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Design of Function F

The heart of a Feistel block cipher is the function F. As we have seen, in DES, this function relies on the use of S-boxes. This is also the
case for most other symmetric block ciphers, as we shall see in . However, we can make some general comments about the
criteria for designing F. After that, we look specifically at S-box design.

Design Criteria for F

The function F provides the element of confusion in a Feistel cipher. Thus, it must be difficult to "unscramble" the substitution performed
by F. One obvious criterion is that F be nonlinear, as we discussed previously. The more nonlinear F, the more difficult any type of
cryptanalysis will be. There are several measures of nonlinearity, which are beyond the scope of this book. In rough terms, the more
difficult it is to approximate F by a set of linear equations, the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the algorithm to have good avalanche properties. Recall that, in
general, this means that a change in one bit of the input should produce a change in many bits of the output. A more stringent version of
this is the strict avalanche criterion (SAC) , which states that any output bif of an S-box should change with probability 1/2
when any single input bit i is inverted for alli, j. Although SAC is expressed in terms of S-boxes, a similar criterion could be applied to F
as a whole. This is important when considering designs that do not include S-boxes.

Another criterion proposed in [WEBS8] is the bit independence criterion (BIC), which states that output bit§ and k should change



independently when any single input bit i is inverted, for alli, j, and k. The SAC and BIC criteria appear to strengthen the effectiveness of
the confusion function.

S-Box Design

One of the most inte areas of research in the field of symmetric block ciphers is that of S-box design. The papers are almost too

numerous to count. Here we mention some general principles. In essence, we would like any change to the input vector to an S-box

to result in random-looking changes to the output. The relationship should be nonlinear and difficult to approximate with linear functions.
[10] o good summary of S-box design studies through early 1996 can be found inBCHN94].

One obvious ristic of the S-box is its size. An n x m S-box has n input bits andm output bits. DES has 6 x 4 S-boxes. Blowfish,
described in Eha;ter g, has 8 x 32 S-boxes. Larger S-boxes, by and large, are more resistant to differential and linear cryptanalysis
. On the other hand, the larger the dimensiom, the (exponentially) larger the lookup table. Thus, for practical reasons, a limit ofi
equal to about 8 to 10 is usually imposed. Another practical consideration is that the larger the S-box, the more difficult it is to design it
properly.

S-boxes are typically organized in a different manner than used in DES. An n x m S-box typically consists of 7" rows of m bits each. The
n bits of input select one of the rows of the S-box, and them bits in that row are the output. For example, in an 8 x 32 S-box, if the input is
00001001, the output consists of the 32 bits in row 9 (the first row is labeled row 0).

[Page 89]

Mister and Adams I propose a number of criteria for S-box design. Among these are that the S-box should satisfy both SAC
and BIC. They also suggest that all linear combinations of S-box columns shauld be bent. Bent functions are a special class of Boolean
functions that are highly nonlinear according to certain mathematical criteria E There has been increasing interest in designing
and analyzing S-boxes using bent functions.

A related criterion for S-boxes is proposed and analyzed in [HEYS95]. The authors define the guaranteed avalanche (GA) criterion as
follows: An S-box satisfies GA of order p if, for a 1-bit input change, at leasp output bits change. The authors conclude that a GA in the
range of order 2 to order 5 provides strong diffusion characteristics for the overall encryption algorithm.

For larger S-boxes, such as 8 x 32, the question arises as to the best method of selecting the S-box entries in order to meet the type of

criteria we have been discussing. Nyberg, who has written a lot about the theory and practice of S-box design, suggests the following
approaches (quoted in [ROBS95H)):

® Random: Use some pseudorandom number generation or some table of random digits to generate the entries in the
S-boxes. This may lead to boxes with undesirable characteristics for small sizes (e.g., 6 x 4) but should be acceptable for
large S-boxes (e.g., 8 x 32).

® Random with testing: Choose S-box entries randomly, then test the results against various criteria, and throw away those
that do not pass.

® Human-made: This is a more or less manual approach with only simple mathematics to support it. It is apparently the
technique used in the DES design. This approach is difficult to carry through for large S-boxes.

® \ath-made: Generate S-boxes according to mathematical principles. By using mathematical construction, S-boxes can be
constructed that offer proven security against linear and differential cryptanalysis, together with good diffusion.

A variation op the first technique is to use S-boxes that are both random and key dependent. An example of this approach is Blowfish,
described in , which starts with S-boxes filled with pseudorandom digits and then alters the contents using the key. A

tremendous advantage of key-dependent S-boxes is that, because they are not fixed, it is impossible to analyze the S-boxes ahead of
time to look for weaknesses.



Key Schedule Algorithm

A final area of block cipher design, and one that has received less attention than S-box design, is the key schedule algorithm. With any
Feistel block cipher, the key is used to generate one subkey for each round. In general, we would like to select subkeys to maximize the
difficulty of deducing individual subkeys and the difficulty of working back to the main key. No general principles for this have yet been
promulgated.

Hall suggests [ADAM94] that, at minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion and Bit
Independence Criterion.

e prey | NEXT B
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3.6. Recommended Reading

There is a wealth of information on symmetric encryption. Some of the more worthwhile references are listed here. An essential
reference work is [ECHNO9€]. This remarkable work contains descriptions of virtually every cryptographic algorithm and protocol
published up to the time of the writing of the book. The author pulls together results from journals, conference proceedings, government
publications, and standards documents and organizes these into a comprehensive and comprehensible survey. Another worthwhile and
detailed survey is . A rigorous mathematical treatment is [STINOZ].

The foregoing references provide coverage of public-key as well as symmetric encryption.

Perhaps the most detai iption of DES is [SIMO94]; the book also contains an extensive discussion of differential and linear
cryptanalysis of DES. 91]] provides a readable and interesting analysis of the ire of DES and of potential cryptanalytic
approaches to DES. [EEF9{] details the most effective brute-force attack on DES. [COPP94] looks at the inherent strength of DES and

its ability to stand up to cryptanalysis.

BARKO91| Barker, W. Introduction to the Analysis of the Data Encryption Standard (DES). Laguna Hills, CA:
Aegean Park Press, 1991.

OPP94 Coppersmith, D. "The Data Encryption Standard (DES) and Its Strength Against Attacks.'|BM Journal
of Research and Development, May 1994.

Electronic Frontier Foundation.Cracking DES: Secrets of Encryption Research, Wiretap Politics, and
Chip Design. Sebastopol, CA: O'Reilly, 1998

ENE97 Menezes, A.; van Oorschot, P.; and Vanstone, S.Handbook of Applied Cryptography. Boca Raton,
FL: CRC Press, 1997.

SCHN94 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SIMO9§ Simovits, M. The DES: An Extensive Documentation and Evaluation. Laguna Hills, CA: Aegean Park
Press, 1995.

STINOZ Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2002.
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3.7. Key Terms, Review Questions, and Problems
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Review Questions

3.1 Why is it important to study the Feistel cipher?

3.2 What is the difference between a block cipher and a stream cipher?

3.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind shown i’?
3.4 What is a product cipher?

35 What is the difference between diffusion and confusion?

3.6 Which parameters and design choices determine the actual algorithm of a Feistel cipher?

3.7 What is the purpose of the S-boxes in DES?

3.8 Explain the avalanche effect.

3.9 What is the difference between differential and linear cryptanalysis?

Problems

3.1
a In , under the subsection on the motivation for the Feistel cipher structure, it was

stated that, for a block of n bits, the number of different reversible mappings for the ideal block
cipher is 2n!. Justify.

b. Inthat same discussion, it was stated that for the ideal block cipher, which allows all possible
reversible mappings, the size of the key is n x Zn bits. But, if there are 5‘! possible mappings, it

should take log2 Zn! bits to discriminate among the different mappings, and so the key length

should be log2 2n!. However, log2 Zn! <n X 2n. Explain the discrepancy.

3.2 Consider a Feistel cipher composed of 16 rounds with block length 128 bits and key length 128 bits. Suppose
that, for a given k, the key scheduling algorithm determines values for the first 8 round keysk1, k2, ..., k8, and
then sets

ko = kg, k10 = k7, k11 = kK8, ..., k16 = k1

Suppose you have a ciphertext c. Explain how, with access to an encryption oracle, you can decryptc and
determine m using just a single oracle query. This shows that such a cipher is vulnerable to a chosen
plaintext attack. (An encryption oracle can be thought of as a device that, when given a plaintext, returns the
corresponding ciphertext. The internal details of the device are not known to you and you cannot break open



3.3

3.4

3.5

3.6

the device. You can only gain information from the oracle by making queries to it and observing its
responses.)

Consider a block encryption algorithm that encrypts blocks of length n, and letN = 2n. Say we havet
plaintext-ciphertext pairs Pj, Ct = E(K, Pj), where we assume that the keyK selects one of the N! possible
mappings. Imagine that we wish to find K by exhaustive search. We could generate keyK' and test whetherC

= E(K', Pj) for 1 ii i t. IfK" encrypts eachPj to its proper Cj then we have evidence thatk = K'. However,
it may be the case that the mappings E(K, -) and E(K', -) exactly agree on thet plaintext-ciphertext pairs Pj, Cj

and agree on no other pairs.
a.  What is the probability that EK, -) and E(K', -) are in fact distinct mappings?

b. What is the probability that E(K, -) and E(K', -) agree on anothert' plaintext-ciphertext pairs where 0

F Fn o

Let p be a permutation of the integers 0, 1, 2, ... (? - 1) such thatp(m) gives the permuted value of m, 0 i

m E 2" put another way,p maps the set of n-bit integers into itself and no two integers map into the same
integer. DES is such a permutation for 64-bit integers. We say that p has a fixed point atm if p(m) = m. That
is, if p is an encryption mapping, then a fixed point corresponds to a message that encrypts to itself. We are
interested in the probability that p has no fixed points. Show the somewhat unexpected result that over 60%
of mappings will have at least one fixed point.
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Consider the substitution defined by row 1 of S-box S1 in . Show a block diagram similar to

that corresponds to this substitution.

Compute the bits number 1, 16, 33, and 48 at the output of the first round of the DES decryption, assuming
that the ciphertext block is composed of all ones and the external key is composed of all ones.



3.7 Suppose the DES F function mapped every 32-bit input R, regardless of the value of the input K, to
a. 32-bit string of ones,
b. bitwise complement of R.
Hint: Use the following properties of the XOR operation:
1. What function would DES then compute?

2. What would the decryption look like?

(A®B)®C=A®(B®c)
A®A=O
A®O=A

A® 1 = bitwise complement ofA
where
A, B, Care n-bit strings of bits
0 is an n-bit string of zeros

1is an n-bit string of one

3.8 This problem provides a numerical example of encryption using a one-round version of DES. We start with
the same bit pattern for the key K and the plaintext, namely:
in hexadecimal notation: 0123456789ABCDEF
in binary notation: 0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 0100 1101 1110 1111

a. Derive K1, the first-round subkey.
b. Derive L0, RO.

c. Expand RQto get E[RQ], where E[] is the expansion function of Figure 3.8.

d. Calculate A=E[RQ] @ K1.

e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding S-box
substitutions.

f. Concatenate the results of (e) to get a 32-bit result, B.

g. Apply the permutation to get P(B).

h. Calculate R1 = P(B) @ Lo.



i.  Write down the ciphertext.

3.9 Show that DES decryption is, in fact, the inverse of DES encryption.

3.10 The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make the encryption process
invertible by simply running the ciphertext back through the algorithm with the key order reversed. This was
demonstrated in Problem 3.7. However, it still may not be entirely clear why the 32-bit swap is needed. To
demonstrate why, solve the following exercises. First, some notation:

A||B = the concatenation of the bit stringsA and B

Ti(R||L) = the transformation defined by the ith iteration of the encryption algorithm, for 1

FF

TDi(R||L) = the transformation defined by the ith iteration of the decryption algorithm, for 1

FiF

T17(R|IL) = LJ||R. This transformation occurs after the sixteenth iteration of the encryption
algorithm.
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a. Show that the composition TD1(IP(IP-l(T17(T16(L15|IR15))))) is equivalent to the transformation
that interchanges the 32-bit halves, L15 and R15. That is, show that

TDAIP(P L (T17(T16(L15|IR15)))) = R15]|L15

b. Now suppose that we did away with the final 32-bit swap in the encryption algorithm. Then we
would want the following equality to hold:

TD1IP(P L (T16(L15/IR15)) = R15(IL15

Does it?

3.11 Compare the initial permutation table ([Table 3.2 with the permuted choice one table {Table 3.4H). Are the

structures similar? If so, describe the similarities. What conclusions can you draw from this analysis?

3.12 When using the DES algorithm for dec
Therefore, the right-hand side of figure 3
appropriate shift schedule (analogous to

ption, the 16 keys (K1, K2, ..., K16) are used in reverse order.
3 is no longer valid. Design a key-generation scheme with the
able 3.4d) for the decryption process.

3.13
a. Let X be the bitwise complement ofX. Prove that if the complement of the plaintext block is taken

and the complement of an encryption key is taken, then the result of DES encryption with these
values is the complement of the original ciphertext. That is,

IFY=E®K, %



ThenY'= E(K, X
Hint: Begin by showing that for any two bit strings of equal lengthh and B, (A® B) = A® X B.

b. It has been said that a brute-force attack on DES requires searching a key space of 256keys.
Does the result of part (a) change that?

3.14 Show that in DES the first 24 bits of each subkey come from the same subset of 28 bits of the initial key and
that the second 24 bits of each subkey come from a disjoint subset of 28 bits of the initial key.

3.15 For any block cipher, the fact that it is a nonlinear function is crucial to its security. To see this, suppose that
we have a linear block cipher EL that encrypts 128-bit blocks of plaintext into 128-bit blocks of ciphertext. Let
EL(k, m) denote the encryption of a 128-bit messagem under a keyk (the actual bit length ofk is irrelevant).
Thus

EL(k, [m1® m2]) = EL(k, m1) @ EL(k, m1) for all 128-bit patternsm1, m2

Describe how, with 128 chosen ciphertexts, an adversary can decrypt any ciphertext without knowledge of
the secret key k. (A "chosen ciphertext" means that an adversary has the ability to choose a ciphertext and
then obtain its decryption. Here, you have 128 plaintext/ciphertext pairs to work with and you have the ability
to chose the value of the ciphertexts.)

Note: The following problems refer to simplified DES, described in Appendix C.

3.16 Refer to Figure C.2, which depicts key generation for S-DES.
a. How important is the initial P10 permutation function?

b. How important are the two LS-1 shift functions?

3.17 The equations for the variables g andr for S-DES are defined in the section on S-DES analysis. Provide the
equations for s and t.
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3.18 Using S-DES, decrypt the string (10100010) using the key (0111111101) by hand. Show intermediate results

after each function (IP, Fk, SW, Fk, IP'l). Then decode the first 4 bits of the plaintext string to a letter and the
second 4 bits to another letter where we encode A through P in base 2 (i.e., A= 0000, B = 0001,..., P =
1111).

Hint: As a midway check, after the application of SW, the string should be (00010011).

Programming Problems



3.19 Create software that can encrypt and decrypt using a general substitution block cipher.

3.20 C re that can encrypt and decrypt using S-DES. Test data: Use plaintext, ciphertext, and key of
Problem 3.1,

E=a wExT
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The next morning at daybreak, Star flew indoors, seemingly keen for a lesson. | said, "Tap eight." She did a
brilliant exhibition, first tapping it in 4, 4, then giving me a hasty glance and doing itin 2, 2, 2, 2, before coming for
her nut.

It is astonishing that Star learned to count up to 8 with no difficulty, and of her own accord discovered that each
number could be given with various different divisions, this leaving no doubt that she was consciously thinking
each number. In fact, she did mental arithmetic, although unable, like humans, to name the numbers. But she
learned to recognize their spoken names almost immediately and was able to remember the sounds of the
names. Star is unique as a wild bird, who of her own free will pursued the science of numbers with keen interest
and astonishing intelligence.

Living with Birds, Len Howard

Key Points

® A field is a set of elements on which two arithmetic operations (addition and multiplication) have been
defined and which has the properties of ordinary arithmetic, such as closure, associativity, commutativity,
distributivity, and having both additive and multiplicative inverses.
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® \odular arithmetic is a kind of integer arithmetic that reduces all numbers to one of a fixed set [0..n 1] for
some number n. Any integer outside this range is reduced to one in this range by taking the remainder after
division by n.

® The greatest common divisor of two integers is the largest positive integer that exactly divides both integers.

® rinite fields are important in several areas of cryptography. A finite field is simply a field with a finite number
of elements. It can be shown that the order of a finite field (number of elements in the field) must be a power

) n . L
of a prime p , where n is a positive integer.

® rinite fields of order p can be defined using arithmetic modp.

® [inite fields of order pn, for n > 1 can be defined using arithmetic over polynomials.

Finite fields have become increasingly important in cryptography. A number of cryptographic algorithms rely heavily on properties of finite
fields, notably the Advanced Encryption Standard (AES) and elliptic curve cryptography.

The chapter begins with a brief overview of the concepts of group, ring, and field. This section is somewhat abstract; the reader may
prefer to quickly skim this section on a first reading. Next, we need some elementary background in modular arithmetic and the
Euclidean algorithm. We are then ready to discuss finite fields of the form GFp), where pis a prime number. Next, we need some

additional background, this time in polynomial arithmetic. The chapter concludes with a discussion of finite fields of the form GF(?)
where n is a positive integer.
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[he concepts and techniques of number theory are quite abstract, and it is often difficult to grasp them intuitively without examples
UBI97]. Accordingly, this chapter an include a number of examples, each of which is highlighted in a shaded box.

e prey NExT
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4.1. Groups, Rings, and Fields

Groups, rings, and fields are the fundamental elements of a branch of mathematics known as abstract algebra, or modern algebra. In
abstract algebra, we are concerned with sets on whose elements we can operate algebraically; that is, we can combine two elements of
the set, perhaps in several ways, to obtain a third element of the set. These operations are subject to specific rules, which define the
nature of the set. By convention, the notation for the two principal classes of operations on set elements is usually the same as the
notation for addition and multiplication on ordinary numbers. However, it is important to note that, in abstract algebra, we are not limited to
ordinary arithmetical operations. All this should become clear as we proceed.

Groups

A group G, sometimes denoted by {G, ‘} is a set of elements with a binary operatioenoted by -, that associates to each ordered paig(

b) of elements in G an element (a - b) in G, such that the following axioms are obeyed .1

M The operator - is generic and can refer to addition, multiplication, or some other mathematical operation.

(A1) Closure: Ifaandb belong to G, thena -bis also in G.

(A2) Associative: a-(b-c)=(a-b)-cforalla,b,cinG.

(A3) Identity element: There is an element e inG such thata-e=e-a=aforallainG.
(A4) Inverse element: For eachain G there is an elementa’ inG such thata-a' =a' -a=-e.

Let Nn denote a set ofn distinct symbols that, for convenience, we represent as {1,2,..n}. A permutation of n distinct
symbols is a one-to-one mapping from Np to Nn. Define Sh to be the set of all permutations of n distinct symbols. Each
element of Sn is represented by a permutation of the integers in {1,2,..}. It is easy to demonstrate that $ is a group:

[Page 98]

Al: Ifp,r ESn, then the composite mappingp - r is formed by permuting the elements ofr according to the
permutation p. For example, {3,2,1} - {1,3,2} = {2,3,1}. Clearlyp - r ESn.

A2: The composition of mappings is also easily seen to be associative.




A3: The identity mapping is the permutation that does not alter the order of the n elements. For Sp, the
identity element is {1,2,...,n}.

A4: Forany pESn, the mapping that undoes the permutation defined byp is the inverse element forp. There
will always be such an inverse. For example {2,3,1} - {3,1,2} = {1,2,3}

If a group has a finite number of elements, it is referred to as a finite group, and the order of the group is equal to the number of
elements in the group. Otherwise, the group is an infinite group.

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a-b=b-aforalla, binG.

The set of integers (positive, negative, and 0) under addition is an abelian group. The set of nonzero real numbers under
multiplication is an abelian group. The set Sp from the preceding example is a group but not an abelian group fon > 2.

When the group operation is addition, the identity elementis O; the inverse element of ais a; and subtraction is defined with the following
rule: ab=a+ (b).

Cyclic Group

We define exponentiation within a group as repeated application of the group operator, so that a3 =a-a-a. Further, we define a0 =e, the

identity element; and a_n = (a')n. A groupG is cyclic if every element of G is a power ak (k is an integer) of a fixed eIementaE G. The
element ais said to generate the group G, or to be a generator of G. A cyclic groupis always abelian, and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element 1. In this case, powers are interpreted
additively, so that n is the nth power of 1.

Rings



A ring R, sometimes denoted by {R, +, x}, is a set of elements with two binary operations, calledaddition and multiplication,= such that for

all a, b, c in R the following axioms are obeyed:

2] Generally, we do not use the multiplication symbol, x, but denote multiplication by the concatenation of two
elements.

(A1-A5) R is an abelian group with respect to addition; that is,R satisfies axioms Al through A5. For the case of an additive group, we
denote the identity element as 0 and the inverse of aasa.

(M1) Closure under multiplication: Ifaandb belong to R, thenab is also in R.
(M2) Associativity of multiplication: a(bc) = (ab)c for alla, b, cinR.
(M3) Distributive laws: a(b+c)=ab +acforalla b, cinR.

(a+b)c=ac+bcforalla b, cinR.
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In essence, a ring is a set in which we can do addition, subtractiond b = a + (-b)], and multiplication without leaving the set.

With respect to addition and multiplication, the set of alln-square matrices over the real numbers is a ring.

Aring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab =baforalla, binR.

Let S be the set of even integers (positive, negative, and 0) under the usual operations of addition and multiplicatiors is a
commutative ring. The set of all n-square matrices defined in the preceding example is not a commutative ring.

Next, we define an integral domain, which is a commutative ring that obeys the following axioms:

(M5) Multiplicative identity: There is an element 1 inR such thatal = la=afor allainR.

(M6) No zero divisors: Ifa,binR andab =0, then eithera=0 orb=0.



Let S be the set of integers, positive, negative, and 0, under the usual operations of addition and multiplicationS is an
integral domain.

Fields

A field F, sometimes denoted by {F, +, X}, is a set of elements with two binary operations, callecaddition and multiplication, such that for all
a, b, ¢ in F the following axioms are obeyed:
(A1MS6) F is an integral domain; that is,F satisfies axioms Al through A5 and M1 through M6.

(M7) Multiplicative inverse: For eachain F, except 0, there is an elementa L in F such thataa™* = (a-l)a =1.

In essence, a field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set. Division is defined

with the following rule: a/b = a(b_l).

Familiar examples of fields are the rational numbers, the real numbers, and the complex numbers. Note that the set of all
integers is not a field, because not every element of the set has a multiplicative inverse; in fact, only the elements 1 and
-1 have multiplicative inverses in the integers.

summarizes the axioms that define groups, rings, and fields.
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Figure 4.1. Group, Ring, and Field
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4.2. Modular Arithmetic

Given any positive integern and any nonnegative integera, if we divide a by n, we get an integer quotientg and an integer remainderr
that obey the following relationship:

Equation 4-1

a=gn+r O=r<nqg=|an|

where I.xJ is the largest integer less than or equal tax.

demonstrates that, givena and positive n, it is always possible to findg andr that satisfy the preceding relationship. Represent
the integers on the number line; a will fall somewhere on that line (positivea is shown, a similar demonstration can be made for negativea).

Starting at 0, proceed to n, 2n, up to gn such thatgn i: aand (g + 1)n> a. The distance fromgn to ais r, and we have found the unique
values of g andr. The remainderr is often referred to as a fesidug

Figure 4.2. The Relationship a=qgn +r, 0E r<n

}View full size imaqei

M
n Zn 2] 4A a g+ 1A

a=11; n=7, 11=1x7 +4; r=4 q=1

a=-11; n=7; 11=(-2)x7+3; r=3 q=-2

If ais an integer andn is a positive integer, we definea mod n to be the remainder whena is divided byn. The integern is called the
modulus. Thus, for any integera, we can always write:

a=|.a/nJ X n+ (amodn)
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11 mod 7 = 4;

-11mod7=3

Two integers a and b are said to be congruent modulo n, if (@ mod n) = (b mod n). This is written asa = b (mod n).

Blwe have just used the operator mod in two different ways: first as a binary operator that produces a remainder, as

in the expression a mod b; second as a congruence relation that shows the equivalence of two integers, as in the

expression To distinguish the two uses, the mod term is enclosed in parentheses for a congruence relation; this is
common but not universal in the literature. See Appendix D for a further discussion.

73 =4 (mod 23);

21 = -9 (mod 10)
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Divisors

We say that a nonzerob divides a if a = mb for somem, where a, b, and m are integers. T
division. The notation is commonly used to mean b divides a. Also, if bja, we say thatb is a

at is. b divides a if there is no remainder on
of a.

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

The following relations hold:

® all, thena=+1.

® |f a)b and bla, thena = +b.

® Anyb P2 0 divides o.

® blg and bjh, thenb|(mg + nh) for arbitrary integersm and n.

To see this last point, note that

If bjg, theng is of the form g = b x g1 for some integersgi.
If blh, thenh is of the form h = b x h1 for some integershi.
So

mg + nh = mbgi + nbh1 = b x (mg1 + nh1)

and therefore b divides mg + nh.



7|14 and

We have

b=7;g=

14;,h=63;m=3;n=2.
7163. To show: 7|(3 x 14 + 2 x 63)

(Bx14+2x63)=73x2+2x9)

And it is obvious that 7|(7(3 x 2 + 2 x 9))

Note that if a = 0 (modn), then n|a.

Properties of Congruences

Congruences have the following properties:

1. a== b (modn)ifnjab).

2.

3.

a = b (mod n) implies b = a (modn)..

a = b (mod n) and b = ¢ (mod n) imply a = ¢ (mod n).

To demonstrate the first point, if n|(ab), then (ab) = kn for somek. So we can writea = b + kn. Therefore, (a modn) = (reminder when b + kn
is divided by n) = (reminder when b is divided byn) = (b mod n)

23 = 8 (mod 5) because 238=15=53
11 = 5(mod 9) because 115=16=8x (2)
81 = 0 (mod 27) because 810=81=27x3

The remaining points are as easily proved.
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Modular Arithmetic Operations

Note that,
Canwe p

by definition , the (mod n) operator maps all integers into the set of integers {0, 1,... § 1)}. This sugg
rform arithmetic operations within the confines of this set? It turns out that we can; this technique is known as

prithmetid.

Modular arithmetic exhibits the following properties:

1

2.

[(@modn) + (b modn)] modn = (a+ b) modn

[(a modn) (b modn)] modn = (ab) modn

Eodular

juestion:




3. [(@modn) x (b modn)] modn = (axb) modn

We demonstrate the first property. Define (a modn) = rg and (b modn) = rp. Then we can writea = rg + jn for some integerj andb = rp + kn
for some integer k. Then

(a+b)modn=(ra+jn+rp+kn) modn
=(ra+rb(k+j)n) modn

= (ra+rb) modn

= [(amodn] + (b modn)] mod n

The remaining properties are as easily proved. Here are examples of the three properties:

11mod8=3;15mod8=7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2
(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) (15mod 8)]mod 8 = 4mod 8 = 4
(11 15)mod 8 = 4mod 8 = 4

[(21 mod 8) x (15 mod 8)] mod 8 =21 mod 8 =5
(11 x15) mod 8 =165mod 8 =5

Exponentiation is performed by repeated multiplication, as in ordinary arithmetic. (We have more to say about exponentiation in
)

To find 117 mod 13, we can proceed as follows:

11°=121= 4 (mod 13)

220= 2=

11%= 119° = 2= 3 (mod 13)

1=

11 11 x 4 x 3= 132 == 2 (mod 13)

Thus, the rules for ordinary arithmetic involving addition, subtraction, and multiplication carry over into modular arithmetic.

[Page 104]

provides an illustration of modular addition and multiplication modulo 8. Looking at addition, the results are straightforward
and there is a regular pattern to the matrix. Both matrices are symmetric about the main diagonal, in conformance to the commutative
property of addition and multiplication. As in ordinary addition, there is an additive inverse, or negative, to each integer in modular
arithmetic. In this case, the negative of an integer x is the integery such that (x + y) mod 8 = 0. To find the additive inverse of an
integer in the left-hand column, scan across the corresponding row of the matrix to find the value 0; the integer at the top of that
column is the additive inverse; thus (2 + 6) mod 8 = 0. Similarly, the entries in the multiplication table are straightforward. In ordinary
arithmetic, there is a multiplicative inverse, or reciprocal, to each integer. In modular arithmetic mod 8, the multiplicative inverse of x is




the integer y such that (x x y) mod 8 = 1 mod 8. Now, to find the multiplicative inverse of an integer from the multiplication table, scan
across the matrix in the row for that integer to find the value 1; the integer at the top of that column is the multiplicative inverse; thus (3
x 3) mod 8 = 1. Note that not all integers mod 8 have a multiplicative inverse; more about that later.

Table 4.1. Arithmetic Modulo 8

IView full size image|

+ 0 1 2 3 + 5 (4] 7

| 1 2 3 4 5 i 7 0

2 . 3 - 5 [ 7 0 1

3 3 4 5 G 7 0 I 2

4 4 5 (i 7 0 | 2 3

5 5 G T L | 2 3 4

L i 7 L1 | 2 3 4 5

7 7 0 i 2 3 4 3 6

(a) Addition modulo 8

¥ ] | 2 3 4 5 f 7 i —w Wl

il 0 i 0 0 i 0 {0 L1 ¥

1 0 | 2 3 4 5 &5 7 i 7 I

2 0 2 4 (i 0 2 4 i 2 i —

3 ] 3 i | 4 7 2 5 3 5 3

4 ] 4 1] 4 0 4 0 4 4 4 —

5 0 5 2 ) 4 1 & 3 3 A 3

6 i} 6 1 2 0 6 4 |2 [ 2 —

7 0 7 (Y 5 4 3 2 1 7 l 7

(b) Muluplication modulo 8 (c) Addiive and muluplicative
inverses modulo 8§
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Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative integers less tham:




Zn=1{0, 1,...(n 1)}

This is referred to as the set of residues, or modulo n. To be more precise, each integer in A represents a residue class.
We can label the residue classes modulo n as [0], [1], [2],...,h 1], where

[r] ={a:ais an integer, a = (mod n)}

The residue classes modulo 4 are
[0]={...,16,12,8,4,0, 4,8, 12, 16,... }
[={..1511,7,3,1,5,9,13,17,...}
[21={..., 14, 10,6, 2, 2, 6, 10, 14, 18,... }

[B1={..,13,9,5,1,3,7,11,15,19,... }

Of all the integers in a residue class, the smallest nonnegative integer is the one usually used to represent the residue class. Finding the
smallest nonnegative integer to which k is congruent modulon is called reducing k modulo n.

If we perform modular arithmetic within Zn, the properties shown in hold for integers in Zy. Thus, Zn is a commutative ring with a
multiplicative identity element “Fi;ure 4])

Table 4.2. Properties of Modular Arithmetic for Integers in Z,

Property Expression

Commutative laws (w +x) modn = (x +w) modn
(w xx) modn=(xxw) modn

Associative laws [(w +x) +y] modn = [w + (x +y)] modn
[(w xx) xy] modn = [w X (x xy)] modn

Distributive laws [w+ (x+y)] modn=[(wxXx) + (w xy)] modn
[w+ (xxy)] modn=[(w +x) X (w+y)] modn

Identities (0 + w) modn=w modn
(1 +w) modn=w modn

Additive inverse (w) For eachw € Zp, there exists az such thatw + z = 0 modn

There is one peculiarity of modular arithmetic that sets it apart from ordinary arithmetic. First, observe that, as in ordinary arithmetic, we
can write the following:

Equation 4-2

if(a + b)=(a+c¢)(modn) then b =c(modn)




(5 + 23) = (5 + 7)(mod 8}; 23= 7 (mod 8)
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is consistent with the existence of an additive inverse. Adding the additive inverse ofa to both sides of , we

have:
(&) +a+b) = (@ +a+c)(mod n)
b = ¢ (mod n)

However, the following statement is true only with the attached condition:

Equation 4-3

ifla X b)=(axc)modn)thenb = ¢ (mod n) ifais relatively prime to n

where the term relativel ime | fined as follows: two integers are[elatively prima if their only common positive integer factor is 1.
Similar to the case of quation (4.2], we can say tha Jation (4.3] is consistent with the existence of a multiplicative inverse. Applying the
multiplicative inverse of a to both sides onguation (4.2, we have:

(@hab) = (@hac)mod n)

b = ¢ (mod n)

To see this, consider an example in which the condition of does not hold. The integers 6 and 8 are not
relatively prime, since they have the common factor 2. We have the following:

6x3=18= 2 (mod 8)

6x7=422= 2 (mod 8)

Yet 3 ¥ 7 (mod 8).

The reason for this strange result is that for any general modulus n, a multipliera that is applied in turn to the integers 0 through £ 1) will fail
to produce a complete set of residues if a and n have any factors in common.



Witha=6 andn =38,

Z8 0 1 2 3 4 5 6 7
Multiply by 6 0 6 12 18 24 30 36 42
Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by 6, more than one integer in Zg maps into the
same residue. Specifically, 6 x 0 mod 8 =6 x 4 mod 8; 6 x 1 mod 8 = 6 x 5 mod 8; and so on. Because this is a
many-to-one mapping, there is not a unique inverse to the multiply operation.

However, if we takea =5 andn = 8, whose only common factor is 1,

Z8 0 1 2 3 4 5 6 7
Multiply by 6 0 5 10 15 20 25 30 35
Residues 0 5 2 7 4 1 6 3

The line of residues contains all the integers in 2, in a different order.
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In general, an integer has a multiplicative inverse in Zy if that integer is relatively prime ton. [Table 4.1d shows that the integers 1, 3, 5,

and 7 have a multiplicative inverse in Zg, but 2, 4, and 6 do not.
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4.3. The Euclidean Algorithm

One of the basic techniques of number theory is the Euclidean algorithm, which is a simple procedure for determining the greatest
common divisor of two positive integers.

Greatest Common Divisor

Recall that nQnzero b is defined o be a divisor ofa if a= mb for somem, where a, b, and m are integers. We will use the notation gcdé, b)
to mean the [ of aand b. The positive integerc is said to be the greatest common divisor ofa and b if

1. cisadivisor ofaand ofb;
2. any divisor of aandb is a divisor ofc.
An equivalent definition is the following:
gcd(a, b) = max[k, such thatk|a and k|b]
Because we require that the greatest common divisor be positive, gcd(a, b) = gcd(a, b) = gcd(a, b) = ged(a, b). In general, gcd(a, b) =

ged(lal, [b])-

gcd(60, 24) = ged(60, 24) = 12

Also, because all nonzero integers divide 0, we have gcd(a, 0) = 4.
We stated that two integers a and b are relatively prime if their only common positive integer factor is 1. This is equivalent to saying thaa

and b are relatively prime if gcdé, b) = 1

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive divisors of 15 are 1, 3, 5, and 15, so
1 is the only integer on both lists.

Finding the Greatest Common Divisor

The Euclidean algorithm is based on the following theorem: For any nonnegative integer a and any positive integerb,
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Equation 4-4

ged(a, b) = ged(b, amod b)

gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) =11
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To see that works, letd = gcd(a, b). Then, by the definition of gcd,d|a and d|b. For any positive integerb, a can be expressed
in the form

a:kb+rEr(modb)

amodb=r

with k, r integers. Therefore, (a mod b) = a kb for some integerk. But because d|b, it also divides kb. We also have dja. Therefore, d|(a mod
b). This shows thatd is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b and (a modb), then d|kb and thus
d|[kb + (a mod b)], which is equivalent tod|a. Thus, the set of common divisors of a and b is equal to the set of common divisors ofb and (a
mod b). Therefore, the gcd of one pair is the same as the gcd of the other pair, proving the theorem.

can be used repetitively to determine the greatest common divisor.

ged(18, 12) = ged(12, 6) = ged(6, 0) = 6

gcd(11, 10) = gcd(10, 1) =ged(1,0) =1

The Euclidean algorithm makes repeated use of to determine the greatest common divisor, as follows. The algorithm
assumes a>b > 0. It is acceptable to restrict the algorithm to positive integers because gcdé, b) = gcd(|al, [b]).

EUCLID(a, b)

At=—aBt0p

if B=0 return A=gcd(a, b)
R=AmodB

A¥t=—pB

B#—R

goto 2

o g s wN R

The algorithm has the following progression:

A|:B1KDL+R1
e o



vl

A, =B, x(Q, + R,

[

&
|

B X Q; + Ry

Vs
Il

B, X Q, + R,
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To find gcd(1970, 1066)

1970 =1x 1066 + 904 gcd(1066, 904)
1066 =1x904 + 162 gcd(904, 162)
904 =5x162+94 gcd(162, 94)
162 =1x94+68 gcd(94, 68)
94 =1x68+26 gcd(68, 26)
68 =2x26+16 gcd(26, 16)
26 =1x16+10 gcd(16, 10)
16 =1x10+6 gcd(10, 6)

10 =1x6+4 ged(6, 4)
6 =1x4+2 gcd(4, 2)
4 =2x2+0 gcd(2, 0)

Therefore, gcd(1970, 1066) = 2

The alert reader may ask how we can be sure that this process terminates. That is, how can we be sure that at some point B divides A?
If not, we would get an endless sequence of positive integers, each one strictly smaller than the one before, and this is clearly
impossible.

=2 wEXT
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4.4. Finite Fields of The Form GF(p)

In , we defined a field as a set that obeys all of the axioms and gave some examples of infinite fields. Infinite fields

are not of particular interest in the context of cryptography. However, finite fields play a crucial role in many cryptographic algorithms. It

can be shown that the order of a finite field (number of elements in the field) must be a power of a prime pn, where nis a positive integer.
We discuss prime numbers in detail in Chapter §. Here, we need only say that a prime number is an integer whose only positive integer
factors are itself and 1. That is, the only positive integers that are divisors of parep and 1.

The finite field of order pn is generally written GF(on); stands for Galois field, in honor of the mathematician who first studied finite fields.
Two special cases are of interest for our purposes. For n = 1, we have the finite field GF(p); this finite field has a different structure than that

for finite fields with n > 1 and is studied in this section. I, we look at finite fields of the form GF(Zn).

Finite Fields of Order p

For a given prime, p, the finite field of order p, GF(p) is defined as the set Zp of integers {0, 1,...,p 1}, together with the arithmetic operations
modulo p.

Recall that we showed in that the set Zn of integers {0,1,...,n 1}, together with the arithmetic operations modulon, is a
commutative ring ( . We further observed that any integer in 4 has a multiplicative inverse if and only if that integer is relatively

prime to n [see discussion of . Ifnis prime, then all of the nonzero integers in 4 are relatively prime ton, and therefore
there exists a multiplicative inverse for all of the nonzero integers in Zn. Thus, we can add the following properties to those listed i m

for Zp:

[l As stated in the discussion o, two integers arerelatively prime if their only common positive integer

factor is 1.
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e 1
Multiplicative inverse (w") For eachw I Zp, w i 0, there exists a
z EZp such thatw x z = (modp)

Because w is relatively prime top, if we multiply all the elements of % by w, the resulting residues are all of the elements of 2 permuted.
Thus, exactly one of the residues has the value 1. Therefore, there is some integer Zp in that, when multiplied byw, yields the residue 1.

That integer is the multiplicative inverse of w, designated wl. Therefore, Zp is in fact a finite field. Further, is consistent with
the existence of a multiplicative inverse and can be rewritten without the condition:



Equation 4-5

if (a X b) = (a X ¢)(mod p) then b = ¢ (mod p)

Multiplying both sides of by the multiplicative inverse ofa, we have:

((al) x axc)(mod p)

((al) x axh)

b ¢ (mod p)

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

w|—w w
0] 0 —
1 1 1

_|.[:_'|+
—

Addition Multiplication Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and multiplication is equivalent to the logical
AND operation.

shows GE his is a field of order 7 using modular grithmetic modulo 7. As can be seen, it satisfies all of the properties
required of a field (. Compare this table With‘. In the latter case, we see that the set & using modular arithmetic
modulo 8, is not a field. Later in this chapter, we show how to define addition and multiplication operations on Zg in such a way as to
form a finite field.

Table 4.3. Arithmetic in GF(7)

(This item is displayed on page 111 in the print version)

IView full size image|




+ 0 1 2 3 4 5 6
) L 1 2 3 4 5 i
| | 2 3 4 3 i) 0
2 2 3 1 5 6 0
3 3 4 5 6 0 | 2
4 i 5 s 0 1 2 3
3 = B (] 1 2 3 4
6 6 0 1 2 4 2
(a) Addition modulo 7
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0 0 0 0 0 0 0 0
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(b) Multiplication modulo 7
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i¢) Additive and multiplicative
inverses modulo 7

Finding the Multiplicative Inverse in GF(p)

Itis easy
shown in

o find the

ultiplicative inverse of an element in GF(p) for small values of p. You simply construct a multiplication table, such as

Table 4.3

, and the desired result can be read directly. However, for large values op, this approach is not practical.

If gcd(m, b) = 1, then b has a multiplicative inverse modulom. That is, for positive integerb < m, there exists ab1 <m such thatbb1 =1mod
m. The Euclidean algorithm can be extended so that, in addition to finding gcdf, b), if the gcd is 1, the algorithm returns the multiplicative
inverse of b.

EXTENDED EUCLID(m, b)
1. (A1, A2, A3) ¥ (1,0, m); (B1, B2, B3) ¥ (0, 1, b)
2.if B3 =0 return A3 = gcd(m, b); no inverse

3.if B3 =1 return B3 =gcd(m, b); B2 = bl mod m
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o= |22
. B3

5.(T1, T2, T3) ¥ (A1 QB1, A2 QB2, A3 QB3)
6. (Al, A2, A3) ¥ (B1, B2, B3)

7.(B1, B2, B3) ¥ (T1, T2, T3)

8.goto 2

Throughout the computation, the following relationships hold:

mT1+bT2=T3 mA1 + bA2 = A3 mB1 + bB2 = B3

To see that this algorithm correctly returns gcd(m, b), note that if we equate A and B in the Euclidean algorithm with A3 and B3 in the
extended Euclidean algorithm, then the treatment of the two variables is identical. At each iteration of the Euclidean algorithm, A is set
equal to the previous value of B and B is set equal to the previous value of A mod B. Similarly, at each step of the extended Euclidean
algorithm, A3 is set equal to the previous value of B3, and B3 is set equal to the previous value of A3 minus the integer quotient of A3
multiplied by B3. This latter value is simply the remainder of A3 divided by B3, which is A3 mod B3.
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Note also that if gcd(m, b) = 1, then on the final step we would have B3 = 0 and A3 = 1. Therefore, on the preceding step, B3 = 1. But if B3
=1, then we can say the following:

mB1 + bB2 = B3
mB1 + bB2 = 1
bB2 = 1 mB1

bB2 = 1 (mod m)

And B2 is the multiplicative inverse of b, modulom.

is an example of the execution of the algorithm. It shows that gcd(1759, 550) = 1 and that the multiplicative
inverse of 550 is 355; that is, 550 x 335 == 1 (mod 1759).




Table 4.4. Finding the Multiplicative Inverse of 550 in GF(1759)

Q Al A2 A3 B1 B2 B3

1 0 1759 0 1 550

3 0 1 550 1 3 109
5 1 3 109 5 16 5
21 5 16 5 106 339 4
1 106 339 4 111 355 1

For a more detailed proof of this algorithm, see KNUT97]].

Summary

In this section, we have shown how to construct a finite field of order p, where p is prime. Specifically, we defined GF{) with the following

properties:

1. GF(p) consists of p elements.

2. The binary operations + and x are defined over the set. The operations of addition, subtraction, multiplication, and division can

be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse.

We have shown that the elements of GF(p) are the integers {0, 1

p.

p} and that the arithmetic operations are addition and multiplication mod




=2
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4.5. Polynomial Arithmetic

Before pursuing our discussion of finite fields, we need to introduce the interesting subject of polynomial arithmetic. We are
concerned with polynomials in a single variable x, and we can distinguish three classes of polynomial arithmetic:

®  Ordinary polynomial arithmetic, using the basic rules of algebra
® Polynomial arithmetic in which the arithmetic on the coefficients is performed modulo p; that is, the coefficients are in GFp)

® Polynomial arithmetic in which the coefficients are in GF(p), and the polynomials are defined modulo a polynomiam(x) whose
highest power is some integer n

This section examines the first two classes, and the next section covers the last class.

Ordinary Polynomial Arithmetic

=

A polynomial of degree n (integer n == 0) is an expression of the form

M
fix) =apx" + ap_x" '+ o+ ax +ag = > an
f=1

where the aj are elements of some designated set of numbersS, called the coefficient set, andan i 0. We say that such polynomials
are defined over the coefficient set S.

A zeroth-degree polynomial is called a constant polynomial and is simply an element of the set of coefficients. Annth-degree polynomial
is said to be a monic polynomialifan = 1.

In the context of abstract algebra, we are usually not interested in evaluating a polynomial for a particular value of x [e.g., f(7)]. To
emphasize this point, the variable x is sometimes referred to as theindeterminate.

Polynomial arithmetic includes the operations of addition, subtraction, and multiplication. These operations are defined in a natural way as
though the variable x was an element of S. Division is similarly defined, but requires thatS be a field. Examples of fields include the real
numbers, rational numbers, and Zp for p prime. Note that the set of all integers is not a field and does not support polynomial division.

Addition and subtraction are performed by adding or subtracting corresponding coefficients. Thus, if

m

fix) = iﬂe-x"; g(x) = D bx'y n=m
=0

i={)

then addition is defined as

i i



flx) + glx) = D(a; + b)x' + 3 an'

i=[) i=m+1
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and multiplication is defined as

mt+m

flx) X glx) = %f,-x"

where
Ck = apbk1 + aibk1 + ... + ak1b1 + akbo

In the last formula, we treat aj as zero fori > n and bj as zero fori > m. Note that the degree of the product is equal to the sum of the
degrees of the two polynomials.

As an example, let f(x) = x3 + x2 + 2 andg(x) = x2 x + 1, where S is the set of integers. Then
f(x) + g(x) = x3 + 2x2x +3

_.3
fx) gx)=x" +x+1

f(x) x g(x) = x5 + 3x22x +2

through show the manual calculations. We comment on division subsequently.

Figure 4.3. Examples of Polynomial Arithmetic

248 + 2 T+ + 2

+ (& —x+1) — (P —-x+1)

O+2— x + 3 344 L s i L

(a) Addition (b) Subtraction

042 + 2 xr + 2

X (—x+1) JL‘:—,I-:+1/,IH+.';'3 + 2

2+ - 2 X =x + x
—xt = — 2 2 x + 2




© + 2 + 240 232 — Ty 42

¥ +3° — 2+ 2 X

(c) Multiplication (d) Division

Polynomial Arithmetic with Coefficients in Zp

Let us now consider polynomials in which the coefficients are elements of some field F. We refer to this as a polynomial over the field F. In
that case, it is easy to show that the set of such polynomials is a ringferred to as a polynomial ring. That is, if we consider each

distinct polynomial to be an element of the set, then that set is a ring. 2

51y fact, the set of polynomials whose coefficients are elements of a commutative ring forms a polynomial ring, but
that is of no interest in the present context.
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When polynomial arithmetic is performed on polynomials over a field, then division is possible. Note that this does not mean that exact
division is possible. Let us clarify this distinction. Within a field, given two elements and b, the quotienta/b is also an element of the field.
However, given a ring R that is not a field, in general division will result in both a quotient and a remainder; this is not exact division.

Consider the division 5/3 within a set S. If S is the set of rational numbers, which is a field, then the result is simp
expressed as 5/3 and is an element of S. Now suppose thatS is the field Z7. In this case, we calculate (usingTable 4.34):
5/3:(5x3])mod7:(5x5)m0d7=4

which is an exact solution. Finally, suppose that S is the set of integers, which is a ring but not a field. Then 5/3 produces
a quotient of 1 and a remainder of 2:

5/3=1+2/3
5=1x3+2

Thus, division is not exact over the set of integers.

Now, if we attempt to perform polynomial division over a coefficient set that is not a field, we find that division is not always defined.



If the coefficient set is the integers, then (5x%/(3x) does not have a solution, because it would require a coefficient with a
value of 5/3, which is not in the coefficient set. Suppose that we perform the same polynomial division over Z7. Then we

have (5x2)/(3x) = 4x which is a valid polynomial over 7.

However, as we demonstrate presently, even if the coefficient set is a field, polynomial division is not necessarily exact. In general,
division will produce a quotient and a remainder:

Equation 4-6

flx) _ r(x)
e glx) + }

glx
flx) = q(x)g(x) + r(x)

If the degree of f(x) is n and the degree ofg(x) is m, (m == n), then the degree of the quotientg(x) m nis and the degree of the remainder
is at most m - 1. With the understanding that remainders are allowed, we can say that polynomial division is possible if the coefficient set
is a field.

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the remainderr(x) in . That is, r(x) = f(x) mod g(x). If there
is no remainder [i.e., r(x) = 0 ], then we can sayg(x) divides f(x), written asg(x)|f(x); equivalently, we can say thatg(x) is a factor of f(x) or
g(x) is adivisor of f(x).
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For the preceding example and_[f(x) = x3 + x2 + 2 andg(x) = x2x + 1], f(x)/g(x) produces a quotient ofg(x) = x + 2 and a
remainder r(x) = x as shown infigure 4.3d. This is easily verified by noting that

a(x)g(x) + r(x) = (x + 2)(x2x +1)+x= (x3+x2x +2)+Xx

=x3+x2+2=f(x)

For our purposes, polynomials over GF(2) are of most interest. Recall from that in GF(2), addition is equivalent to the XOR
operation, and multiplication is equivalent to the logical AND operation. Further, addition and subtraction are equivalentmod 2: 1 +1=11
=0;1+0=10=1;0+1=01=1.



shows an example of polynomial arithmetic over GF(2). Forf(x) = (x7 + x5 + x4 + x3 +x + 1) andg(x) = (x3 + X
+ 1), the figure shows f(x) + g(x); f(x) 9(x); f(x) x g(x); and f(x)/g(x). Note that g(x)|f(x)

Figure 4.4. Examples of Polynomial Arithmetic over GF(2)

x! + 2+ + X + x + 1
+ (X + x4+ 1)
5 + 2 + ¥

(a) Addition

X + X+ 0+ 3 + x + 1

e + x + 1)

X + X + x
(b) Subtraction

x' Fo a1t + x4 1
% (2 + x4+ 1)
% + X+t + ) + x + 1
i + 2%+ F +x + X+ x
e + 2%+ 2"+ a0 + 24 + 7
£ S + x + 1

(¢) Multiplication

v+ 1
x3+_r+1/x? + X+ 4+ 1 + x + 1
x’ + ¥ 4+

x 3 e e |




X + x + 1

(d) Division
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A polynomial f(x) over a fieldF is called irreducible if and only iff(x) cannot be expressed as a product of two polynomials, both ovef,
and both of degree lower than that of f(x). By analogy to integers, an irreducible polynomial is also called a prime polynomial.

The ponnomiaI@ f(x) = x4 + 1 over GF(2) is reducible, becausex4 +1=(x+ 1)(x3 + x2 +x+1)

8] | the remainder of this chapter, unless otherwise noted, all examples are of polynomials over GF(2).

Consider the polynomial f(x) = x3 +x + 1. Itis clear by inspection thatx is not a factor off(x). We easily show thatx + 1 is
not a factor of f(x):

X+ x
x+]/x3 o 5 sl
x>+ x?
¥+ x
¥+ ox

Thus f(x) has no factors of degree 1. But it is clear by inspection that iff(x) is reducible, it must have one factor of degree
2 and one factor of degree 1. Therefore, f(x) is irreducible.




Finding the Greatest Common Divisor

We can extend the analogy between polynomial arithmetic over a field and integer arithmetic by defining the greatest common divisor as
follows. The polynomial c(x) is said to be the greatest common divisor of a(x) and b(x) if

1. c(x) divides both a(x) and b(x);
2. any divisor of a(x) and b(x) is a divisor of c(x).
An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial of maximum degree that divides botha(x) and b(x).

We can adapt the Euclidean algorithm to compute the greatest common divisor of two polynomials. The equality in can be
rewritten as the following theorem:

Equation 4-7

ocd[a(x), b{x)] = gcd[b{x), a(x) mod b(x)]
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The Euclidean algorithm for polynomials can be stated as follows. The algorithm assumes that the degree of a(x) is greater than the
degree of b(x). Then, to find gcdfa(x), b(x)],

EUCLID[a(x), b(x)]

1. AX) = a(x); B(x) = b(x)

2.if B(x) = 0return A(x) = gcd[a(x), b(x)]
3. R(x) = A(x) mod B(x)

4. AX) == B(x)

5. B(x) ¥ R(X)

6.goto 2

Find gcd[a(x), b(x)] for a(x) = x6 + x5 +x4 + x3 + x2 +x + 1 andb(x) = x4 + x2 +x+ 1.

A(X) = a(x); B(x) = b(x)

¥+ x
e+ x+1 P+ x4+
% +xt + x4+ i
> + x + 1
x’ +x3 +x2 +x

4+ x2 + 1




R(X) = A(x) mod BK) = x© + x> + 1
AK) = X+ xP X+ 1 BO) =X+ X+ 1
x+1
2+ 22+ 1y + x>+ x + 1
Pl i

-y
o

2+ x + 1
X2 + x° + 1

R(x) = A(x) mod B(x) =0

ged[a(x), b(x)] = A(x) = x3 + x2 +1

Summary

We began this section with a discussion of arithmetic with ordinary polynomials. In ordinary polynomial arithmetic, the variable is not
evaluated; that is, we do not plug a value in for the variable of the polynomials. Instead, arithmetic operations are performed on
polynomials (addition, subtraction, multiplication, division) using the ordinary rules of algebra. Polynomial division is not allowed unless the
coefficients are elements of a field.
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Next, we discussed polynomial arithmetic in which the coefficients are elements of GHg). In this case, polynomial addition, subtraction,
multiplication, and division are allowed. However, division is not exact; that is, in general division results in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the greatest common divisor of two polynomials whose
coefficients are elements of a field.

All of the material in this section provides a foundation for the following section, in which polynomials are used to define finite fields of

order pn.

=2



=2
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4.6. Finite Fields Of the Form GF(2")

arlier in this chapter, we mentioned that the order of a finite field must be of the form pn where pis a prime andn is a positive integer. In
Bection 4.4, we looked at the special case of finite fields with orderp. We found that, using modular arithmetic in 2, all of the axioms for a

field are satisfied. For polynomials overpn, withn > 1, operations modulo pn do not produce a field. In this section, we show

what structure satisfies the axioms for a field in a set with pn elements, and concentrate on GF(Zn).

Motivation

Virtually all encryption algorithms, both symmetric and public key, involve arithmetic operations on integers. If one of the operations that is
used in the algorithm is division, then we need to work in arithmetic defined over a field. For convenience and for implementation
efficiency, we would also like to work with integers that fit exactly into a given number of bits, with no wasted bit patterns. That is, we wish

to work with integers in the range 0 through 2" 1, which fit into ann-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on data 8 bits at a time and we wish to
perform division. With 8 bits, we can represent integers in the range 0 through 255. However, 256 is not a prime number,
so that if arithmetic is performed in Z256 (arithmetic modulo 256), this set of integers will not be a field. The closest prime
number less than 256 is 251. Thus, the set Z251, using arithmetic modulo 251, is a field. However, in this case the 8-bit

patterns representing the integers 251 through 255 would not be used, resulting in inefficient use of storage.

As the preceding example points out, if all arithmetic operations are to be used, and we wish to represent a full range of integers inn bits,

then arithmetic modulo will not work; equivalently, the set of integers modulo 2n, forn> 1, is not a field. Furthermore, even if the encryption
algorithm uses only addition and multiplication, but not division, the use of the set Z2" is questionable, as the following example illustrates.
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Suppose we wish to use 3-bit blocks in our encryption algorithm, and use only the operations of addition and multiplication. Then
arithmetic modulo 8 is well defined, as shown in . However, note that in the multiplication table, the nonzero integers do not
appear an equal number of times. For example, there are only four occurrences of 3, but twelve occurrences of 4. On the other hand,

as was mentioned, there are finite fields of the form GF(2') so there is in particular a finite field of order 2?’ = 8. Arithmetic for this field
is shown in [Table 4.5. In this case, the number of occurrences of the nonzero integers is uniform for multiplication. To summarize,
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Integer 1 2 3 4 5 6 7

Occurrences in Z8 4 8 4 12 4 8 4

Occurrences in GF(23)

Table 4.5. Arithmetic in GF(23)
(This item is displayed on page 121 in the print version)

IVieW full size image|
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(h) Multiplication (c) Additive and multiplicative
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For the moment, let us set aside the question of how the matrices of were constructed and instead make some observations.

1. The addition and multiplication tables are symmetric about the main diagonal, in conformance to the commutative property
of addition and multiplication. This property is also exhibited in [Table 4.1, which uses mod 8 arithmetic.

2. All the nonzero elements defined by have a multiplicative inverse, unlike the case witl .




3. The scheme defined by satisfies all the requirements for a finite field. Thus, we can refer to this scheme as GF(%.

4. For convenience, we show the 3-bit assignment used for each of the elements of GF(%).

Intuitively, it would seem that an algorithm that maps the integers unevenly onto themselves might be cryptographically weaker than one

that provides a uniform mapping. Thus, the finite fields of the form GF(Zn) are attractive for cryptographic algorithms.

To summarize, we are looking for a set consisting of 2 elements, together with a definition of addition and multiplication over the set that

define a field. We can assign a unique integer in the range 0 through 2n 1 to each element of the set. Keep in mind that we will not use
modular arithmetic, as we have seen that this does not result in a field. Instead, we will show how polynomial arithmetic provides a means
for constructing the desired field.

Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n 1 or less over the field 4. Thus, each polynomial has the form
n—1

fx) = @ x" @ "+ o+ ax +oag = D agx
=0

where each aj takes on a value in the set {0, 1,...p 1}. There are a total ofpn different polynomials inS.
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Forp=3andn=2, the 32 =9 polynomials in the set are

0 X 2x

1 X+1 2x+1

2 X+ 2 2X+2
Forp=2andn=3, the 23 = 8 the polynomials in the set are

0 x+1

X +X
1 x2 x2 +x+1
X X +1

With the appropriate definition of arithmetic operations, each such set S is a finite field. The definition consists of the following elements:



1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic rules of algebra, with the following two
refinements.

2. Arithmetic on the coefficients is performed modulo p. That is, we use the rules of arithmetic for the finite field 2.
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3. If multiplication results in a polynomial of degree greater than n 1, then the polynomial is reduced modulo some irreducible
polynomial m(x) of degree n. That is, we divide bym(x) and keep the remainder. For a polynomialf(x), the remainder is
expressed as r(x) = f(x) mod m(x).

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(28), with the irreducible polynomialm(x) = x8 + x4 x3 +

x + 1. Consider the two polynomialsf(x) = x6 + x4 + x2 +x+1andg(x) = x7 +x+ 1. Then
f(x)+g(x)=x6+x4x2+x+1+x7+x+1

f(x) x g(x) = x13 + xl:L + x9 + x8 + x7 +

x7+x5+x3+x2+x+

6 4 2
X +X +X +x+1

:X13+X11+X9+X8+X6+X5+X4+X3+1
4 xt
P I S T P L T L i S el S S S S Sl e T R S |
x> + 10 + xF + x% + X
xll + 1+
xil + x7 + X8 + 1! + X
x! + x8 + 1

Therefore, f(x) x g(x) mod m(x) = x7 + x6 +1.

As with ordinary modular arithmetic, we have the notion of a set of residues in modular polynomial arithmetic. The set of residues modulo

) . n . n .
m(x), an nth-degree polynomial, consists ofp elements. Each of these elements is represented by one of thep  polynomials of degree m <
n.

The residue class [x + 1], modulo m(x), consists of all polynomials a(x) such that a(x) E (x + 1) (mod m(x)). Equivalently,
the residue class [x + 1] consists of all polynomials a(x) that satisfy the equalitya(x) mod m(x) = x + 1.




It can be shown that the set of all polynomials modulo an irreducible nth-degree polynomial m(x) satisfies the axioms in, and
thus forms a finite field. Furthermore, all finite fields of a given order are isomorphic; that is, any two finite-field structures of a given order
have the same structure, but the representation, or labels, of the elements may be different.

[Page 123]

To construct the finite field GF(?), we need to choose an irreducible polynomial of degree 3. There are only two such polynomials:
(x3 + x2 + 1) and (x3 + x + 1). Using the latter, shows the addition and multiplication tables for GF(E). Note that this set of
tables has the identical structure to those of . Thus, we have succeeded in finding a way to define a field of order 5

Table 4.6. Polynomial Arithmetic Modulo (x3 +x +1)
(This item is displayed on page 124 in the print version)
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Finding the Multiplicative Inverse




Just as the Euclidean algorithm can be adapted to find the greatest common divisor of two polynomials, the extended Euclidean algorithm
can be adapted to find the multiplicative inverse of a polynomial. Specifically, the algorithm will find the multiplicative inverse of b(x)
modulo m(x) if the degree of b(x) is less than the degree ofm(x) and gcd[m(x), b(x)] = 1. If m(x) is an irreducible polynomial, then it has no
factor other than itself or 1, so that gcd[m(x), b(x)] = 1. The algorithm is as follows:

EXTENDED EUCLID[m(X), b(x)]

1. [AL(x), A2(x), A3(X)] — [1, 0, m(x)]; [B1(x), B2(x),
B3(x)] ¥ [0, 1, b(x)]

2.if B3(x) =0 return A3(x) = gcd[m(x), b(x)]; no
inverse

3.if B3(x) =1 return B3(x) = gcd[m(x), b(X)];
B2(x) = b(x) L mod m(x)

4. Q(x) = quotient of A3(x)/B3(x)

5. [T1(x), T2(x), T3(x)] o [A1(x) Q(X)B1(x), A2(x)
QX)B2(x), A3(x) QB3(x)]

6. [AL(X), A2(x), A3(x)] ¥ [B1(X), B2(x), B3(X)]

7. [B1(x), B2(x), B3(x)] ¥ [T1(x), T2(x), T3(X)]

8.goto 2

shows the calculation of the multiplicative inverse of (x7 +x + 1) mod (x8 + x4 + x3 +x + 1). The result is that

o +x+ = (). Thatis, (¢ +x+ 1)(x') = 1 (mod 6+ x* +xC + x + 1)).

Table 4.7. Extended Euclid [(x& +x* +x% +x + 1), & +x + 1)]

(This item is displayed on page 125 in the print version)

Initialization ALK) = 1: A2() = 0: A3() = x& + X + 3 +x + 1
B1(x) = 0; B2(x) = 1; B3(x) = x7 +x+1
Iteration 1 Q(x) = x
Al(x) = 0; A2(x) = 1; A3(x) = x7 +x+1
B1(x) = 1; B2(x) = x; B3(x) = x4 + x3 + x2 +1
Iteration 2 Q) = X3 . XZ 1
Al(x) =1; A2(x) = x; A3(X) = x4 + x3 + x2 +1
B1(x) = x3+ x2 +1; B2(x) = x4+ x3 +x + 1; B3(x) = x
Iteration 3 QW) = X3 . X2 +x
Al(x) = x3 + x2 +1; A2(x) = x4 + x3 +x + 1; A3(x) = x
B1(x) = x6 + x2 +x+1; B2(x) = x7; B3(x) =1
Iteration 4

B3(x) = gcd[(x7 +x+ 1), (x8 + x4 + x3 +x+1)]=1

BZ(X)Z(X7+X+1)1m0d (x8+x4+x3+x+1)=x7




Computational Considerations

A polynomial f(x) in GF(Zn)

n—1
fixy=a,.x" ' +a,_ "%+ - +ax+ay= Eﬂix‘
i=0

can be uniquely represented by its n binary coefficients (an1an2...a0). Thus, every polynomial in GF(i]) can be represented by an n-bit

number.
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and@ show the addition and multiplication tables for GF(E) modulo m(x) = (x3 +x+1). uses the

binary representation, and [Table 4.4 uses the polynomial representation.

Addition

We have seen that addition of polynomials is performed by adding corresponding coefficients, and, in the case of polynomials over 22

addition is just the XOR operation. So, addition of two polynomials in GF(Zn) corresponds to a bitwise XOR operation.

Consider the two polynomials in GF(28) from our earlier example:f(x) = x6 + x4 + x2 +x+ 1landg(x) = x7 +x+ 1.

(x6 el ex+ 1)+ (x7+ X+ 1) O A S B (polynomial notation)
(01010111) $ (10000011) =(11010100) (binary notation)
{57} @ {83} = (b4 (hexadecimal notation

[7] A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the
Computer Science Student Resource Site at lNiIIiamStaIIinqs.com/StudentSupport.htm . Here each



http://WilliamStallings.com/StudentSupport.html

of two groups of 4 bits in a byte is denoted by a single hexadecimal character, the two characters
enclosed in brackets.

Multiplication

There is no simple XOR operation that will accomplish multiplication in GF(Zn) However, a reasonably straightforward, easily implemented
technique is available. We will discuss the technique with reference to GF(28) using m(x) = x8 + x4 + x3 + x + 1, which is the finite field

used in AES. The technique readily generalizes to GF(Zn).

The technique is based on the observation that

Equation 4-8

x*modm(x) = [m(x) = x¥]=(x*+ x>+ x + 1)
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A moment's thought should convince you that is true; if not, divide it out. In general, in GF(?) with an nth-degree polynomial
p(x), we have x" mod p(x) = [p(x) x"J.

Now, consider a polynomial in GF(28), which has the formf(x) = b7x7 + bex6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + bo. If we multiply byx, we
have

Equation 4-9

x X flx) = (bpx® + bex” + bsx® + by + byt +
bsx® + bix® + bgx) mod m(x)

If b7 = 0, then the result is a polynomial of degree less than 8, which is already in reduced form, and no further computation is necessary. If

b7 =1, then reduction modulom(x) is achieved using Equation (4.8]:

x X f(x) = (bex7 + b5x6 + b4x5 + b3x4 + b2x3 +

b1x2+b0x)+(x4+x3+x+1)

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit left shift followed by a conditional bitwise XOR with

(00011011), which represents (x4 + x3 +x + 1). To summarize,



Equation 4-10

(bﬁbﬁbqf]gbgblbu{}} lrb;r = ()

-K b —
x X fix) (bsbsbybsbabiby0) @ (00011011)  if by

I
—_—

Multiplication by a higher power of x can be achieved by repeated application o. By adding intermediate results,

multiplication by any constant in GF(28) can be achieved.

In an earlier example, we showed that for f(x) = x6 + x4 + x2 +x+1,9(x) = x7 +x+ 1, and m(x) = x8 + x4 + x3 +x+1,

f(x) x g(x) mod m(x) = x7 + x6 + 1. Redoing this in binary arithmetic, we need to compute (01010111) x (10000011). First,
we determine the results of multiplication by powers of x:

(01010111) x (00000001) = (10101110)

(01010111) x (00000100) = (01011100) $ (00011011) = (01000111)

(01010111) x (00001000) = (10001110)

(01010111) x (00010000) = (00011100) $ (00011011) = (00000111)
(01010111) x (00100000) = (00001110)

(01010111) x (01000000) = (00011100)

(01010111) x (10000000) = (00111000)

So,

(01010111) x (10000011) = (01010111) x [(00000001) x (00000010) x (10000000)]

= (01010111) $ (10101110) $ (00111000) = (11000001)

which is equivalent tox7 + x6 +1.

[Page 127]

Using a Generator

An equivalent technique for defining a finite field of the form GF(?) using the same irreducible polynomial, is sometimes more
convenient. To begin, we need two definitions: A generator g of a finite field F of order g (contains g elements) is an element whose firstq 1

powers generate all the nonzero elements of F. That is, the elements of F consist of 0, go, gl,..., ng. Consider a field F defined by a

polynomial f(x). An elementb contained in F is called aroot of the polynomial iff(b) = 0. Finally, it can be shown that a rootg of an
irreducible polynomial is a generator of the finite field defined on that polynomial.



Let us consider the finite field GF(23), defined over the irreducible polynomialx3 +x + 1, discussed previously. Thus, the generatorg

must satisfy f(x) = 93 +g+ 1=0.Keepin mind, as discussed previously, that we need not find a numerical solution to this equality.
Rather, we deal with polynomial arithmetic in which arithmetic on the coefficients is performed modulo 2. Therefore, the solution to the

preceding equality is 93 =g1=g+ 1. We now show that g in fact generates all of the polynomials of degree less than 3. We have the
following:

' =a=ag+ =g’ +g
9529(94)=9(92+g)=g3+92=92+9+1

P =o® g+ =g +g’+g=g’rgrgrizgi+1
g7:g(ge)=g(92+1)=g3+g=g+g+1=1=90

mod

Ve see that the powers of g generate all the nonzero polynomials in GF(E). Also, it should be clear thatgk = gk 7for any integerk.

‘ shows the power representation, as well as the polynomial and binary representations.

Table 4.8. Generator for GF(23) using xS 4x + 1

Power Representation Polynomial Representation Binary Representation Decimal (Hex)
Representation
0 0 000 0
0 7 1 001 1
g (=9)
1 010 2
g g
2 2 100 4
g g
3 g+1 011 3
g
4 2 110 6
g g *+g
5 2 111 7
g g +tg+1
6 2 101 5
g g +1

This power representation makes multiplication easy. To multiply in the power notation, add exponents modulo 7. For example, g4 X 96
= g(lo mod 7)= g3 =g+ 1. The same result is achieved using polynomial arithmetic, as follows: we havc-:g4 = g2 +gand g6 = 92 +1.

Then, (g2 +g) X (g2 +1)= g4 + 93 + 92 + 1. Next, we need to determine (g4 + 93 + 92 + 1) mod (g3 + g+ 1) by division:
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g hgtr Ulghok ghub gt g
g+ g +g

33

g3+ g+ 1

g+ 1

We get a result ofg + 1, which agrees with the result obtained using the power representation.

shows the addition and multiplication tables for GF(E) using the power represenation. Note that this yields the identical
results to the polynomial representation |b with some of the rows and columns interchanged.

Table 4.9. GF(23) Arithmetic Using Generator for the Polynomial )(3 +X +1)
(This item is displayed on page 128 in the print version)
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ibk Multiplication

In general, for GF(Zn) with irreducible polynomial f(x), determine gn =1f(x) gn. Then calculate all of the powers ofg from gn+1 through 92n2'

The elements of the field correspond to the powers of g from through g2n2‘ plus the value 0. For multiplication of two elements in the field,

use the equality gk = gk mod (2] 1 for any integerk.



Summary

In this section, we have shown how to construct a finite field of order 5 Specifically, we defined GF(?) with the following properties:

1 GF(Zn) consists of 2" elements.

2. The binary operations + and x are defined over the set. The operations of addition, subtraction, multiplication, and division can
be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse.

We have shown that the elements of GF(2n) can be defined as the set of all polynomials of degreen 1 or less with binary coefficients. Each
such polynomial can be represented by a unique n-bit value. Arithmetic is defined as polynomial arithmetic modulo some irreducible

polynomial of degree n. We have also seen that an equivalent definition of a finite field GF(E) makes use of a generator and that arithmetic
is defined using powers of the generator.

=2
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4.7. Recommended Reading and Web Sites

IHERSZH], still in print, is the classic treatment of abstract algebra; it is readable and rigorous;[DESK92] is another good resource.
[KNUT9g]] provides good coverage of polynomial arithmetic.
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One of the best treatments of the topics ha, er IMI still in print. [GARRO1]] also has extensive coverage. A thorough

and rigorous treatment of finite fields is [LIDL94]]. [HORO71]] is a good overview of the topics of this chapter.

BERL 84 Berlekamp, E.Algebraic Coding Theory. Laguna Hills, CA: Aegean Park Press, 1984.
DESK94 Deskins, W. Abstract Algebra. New York: Dover, 1992.

ARRO] Garrett, P.Making, Breaking Codes: An Introduction to Cryptology. Upper Saddle River, NJ: Prentice
Hall, 2001.

ERS74H Herstein, |. Topics in Algebra. New York: Wiley, 1975.

ORO71 Horowitz, E. "Modular Arithmetic and Finite Field Theory: A Tutorial.Proceedings of the Second ACM
Symposium and Symbolic and Algebraic Manipulation, March 1971.

NUT9{ Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Reading, MA:
Addison-Wesley, 1998.

IDL94] Lidl, R., and Niederreiter, H.Introduction to Finite Fields and Their Applications. Cambridge: Cambridge
University Press, 1994.

Recommended Web Sites

® pascGalois Project: Contains a clever set of examples and projects to aid in giving students a visual understanding of key
concepts in abstract algebra

e prey | NEXT B
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4.8. Key Terms, Review Questions, and Problems
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Review Questions

4.1. Briefly define a group.
4.2. Briefly define a ring.
4.3. Briefly define a field.

4.4. What does it mean to say thatb is a divisor ofa?



4.5.

4.6.

Problems

4.1

4.2

4.3

4.4

4.5

4.6

What is the difference between modular arithmetic and ordinary arithmetic?

List three classes of polynomial arithmetic.

For the group Sn of all permutations of n distinct symbols,
a.  What is the number of elements inSn?

b. Show that Spis not abelian forn > 2.

Does the set of residue classes modulo 3 form a group
a. with respect to addition?

b. with respect to multiplication?

Consider the set S = {a, b} with addition and multiplication defined by the tables:

o=

b X ]
a
b

== [ ==
==l ]
e}

o
o
e
=
=

Is S a ring? Justify your answer.

Reformulate , removing the restriction thata is a nonnegative integer. That is, leta be any

integer.
Draw a figure similar to fora<o.

Find integersx such that
a 5x == 4 (mod3)
b. 7x == 6 (mod 5)

c. 99X = 8 (mod 7)



4.7 In this text we assume that the modulus is a positive integer. But the definition of the expression a mod n also
makes perfect sense if n is negative. Determine the following:

a 5mod3
b. 5mod3
c. 5mod3
d. 5mod3

4.8 A modulus of 0 does not fit the definition, but is defined by convention as follows: a mod 0 =a. With this

definition in mind, what does the following expression mean: a = b (mod 0)?

4.9 In , we define the congruence relationship as follows: Two integersa and b are said to be

congruent modulo n, if (a mod n) = (b mod n). We then proved thata == b (mod n) if n|(a b). Some texts on
number theory use this latter relationship as the definition of congruence: Two integers a and b are said to be
congruent modulo n, if n|(a b). Using this latter definition as the starting point, prove that iff mod n) = (b mod
n), then n divides (a b).

4.10 'l.".: 'ﬂ:

What is the smallest positive integer that has exactlyk divisors, for 1 === k === 6?

4.11 Prove the following:
a a = b (mod n) implies b = a (mod n)

b. a=b (mod n) and b =. (mod n) imply a = (mod n)

4.12 Prove the following:
a. [(@modn) (b modn)] modn = (ab) modn

b. [(@modn) x (b modn)] modn = (axb) modn
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4.13 Find the multiplicative inverse of each nonzero element in &.

4.14 Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For example, 47'== 4+ 7 + 5

= 16 = 1+ 6 == 7 (mod 9). This is the basis for the familiar procedure of "casting out 9's" when
checking computations in arithmetic.

4.15
a. Determine gcd(24140, 16762).

b. Determine gcd(4655, 12075).

4.16 The purpose of this problem is to set an upper bound on the number of iterations of the Euclidean algorithm.



a. Suppose thatm =qn +r withq> 0 and O == r < n. Show thatm/2 > r.

b. Let At be the value of A in the Euclidean algorithm after theith iteration. Show that

A.

i
i
I"‘z .2

c. Show thatif m, n, andN are integers with 1==m, n, 5 ZN, then the Euclidean algorithm takes
at most 2N steps to find gcd(m, n).

4.17 The Euclidean algorithm has been known for over 2000 years and has always been a favorite among number
theorists. After these many years, there is now a potential competitor, invented by J. Stein in 1961. Stein's

algorithms is as follows. Determine gcd(A, B) with A, B == 1.

STEP 1 SetA1=AB1=B,C1=1

STEP n
1. If An=Bnstop. gcd@, B) = AnCn

2. If Anand Bn are both even, setAn+1 = An/2, Bn+1 = Bn/2, Cn+1 = 2Cn
3. IfAnis even andBnis odd, setAn+1 = An/2, Bn+1 =Bn, Cn+1 =Cn
4. IfAnis odd andBnis even, setAn+1 = An, Bn+1 = Bn/2, Cn+1 =Cn

5. If An and B are both odd, setAn+1 = |An Bn|, Bn + 1 = minBn, An), Cn+1 = Cn

Continue to stepn + 1.

a. To get a feel for the two algorithms, compute gcd(2152, 764) using both the Euclidean and
Stein's algorithm.

b. What is the apparent advantage of Stein's algorithm over the Euclidean algorithm?

4.18
a. Show that if Stein's algorithm does not stop before the nth step, then

Cn+1 x gcd(An+1, Bn+1) = Cn x gcd(An, Bn)
b. Show that if the algorithm does not stop before step (n 1), then
A.II'BH

"q.r.l+:-lBr;'+E - 9

Cc. Showthatif 1l == A B === 2N, then Stein's algorithm takes at most N steps to find gcd(m, n).



4.19

4.20

4.21

4.22

4.23

4.24

4.25

Thus, Stein's algorithm works in roughly the same number of steps as the Euclidean algorithm.

d. Demonstrate that Stein's algorithm does indeed return gcd@, B).

Using the extended Euclidean algorithm, find the multiplicative inverse of
a. 1234 mod 4321
b. 24140 mod 40902

c. 550 mod 1769

Develop a set of tables similar t0 for GF(5).

Demonstrate that the set of polynomials whose coefficients form a field is a ring.

Demonstrate whether each of these statements is true or false for polynomials over a field:
a. The product of monic polynomials is monic.
b. The product of polynomials of degrees m and n has degree m +n

c. The sum of polynomials of degrees m and n has degree max|m, n].
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For polynomial arithmetic with coefficients in 10, perform the following calculations:
2
a (Ix+2)(x"+5)

b. (6x2+x+3)x(5x2+2)

Determine which of the following are reducible over GF(2):
a. x3 +1
b. x3 + x2 +1

C. x4 + 1 (be careful)

Determine the gcd of the following pairs of polynomials:
3 2
a. X +x+landx +x+1over GF(2)
3 2
b. x x+1landx + 1 over GF(3)

C. x5+x4+x3x2x+ 1 andx3+x2+x+ 1 over GF(3)



5

d. x +88x4+ 73x3

+ 83><2 +51x + 67 and x3 + 97><2 + 40x + 38 over GF(101)

4.26 Develop a set of tables similar to for GF(4) withm(x) = x4 +x+1.

421 Determine the multiplicative inverse of x3 +x+1in GF(24), with m(x) = x4 +x+ 1.

4.28 Develop a table similar to for GF(24) with m(x) = x4 +x+ 1.

Programming Problems

4.29 Write a simple four-function calculator in GF(24). You may use table lookups for the multiplicative inverses.

4.30 Write a simple four-function calculator in GF(?). You should compute the multiplicative inverses on the fly.

e prey | NEXT B
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"It seems very simple."
"It is very simple. But if you don't know what the key is it's virtually indecipherable."

Talking to Strange Men, Ruth Rendell

Key Points

® AES s ablock cipher intended to replace DES for commercial applications. It uses a 128-bit block size and
a key size of 128, 192, or 256 bits.

® AES does not use a Feistel structure. Instead, each full round consists of four separate functions: byte
substitution, permutation, arithmetic operations over a finite field, and XOR with a key.

The Advanced Encryption Standard (AES)was published by NIST (National Institute of Standards and Technology in 2001. AES is a
symmetric block cipher that is intended to replace DES as the approved standard for a wide range of applications. In this chapter, we first
look at the evaluation criteria used by NIST to select a candidate for AES and then examine the cipher itself.

Compared to public-key ciphers such as RSA, the structure of AES, and most symmetric ciphers, is very complex and cannot be

explained as easily as RSA and similar algorithms. Accordingly, the reader may with to begin with a simplified version of AES, which is

described in . This version allows the reader to perform encryption and decryption by hand and gain a good understanding

of thorking of the algorithm details. Classroom experience indicates that a study of this simplified version enhances understanding of
1

AES.

(1 However, you may safely skip, at least on a first reading. If you get lost or bogged down in the
details of AES, then you can go back and start with simplified AES.

e Py wEXT
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5.1. Evaluation Criteria For AES

The Origins of AES

We mentioned in that in 1999, NIST issued a new version of its DES standard (FIPS PUB 46-3) that indicated that DES should
only be used for legacy systems and that triple DES (3DES) be used. We describe 3DES in . 3DES has two attractions that
assure its widespread use over the next few years. First, with its 168-bit key length, it overcomes the vulnerability to brute-force attack of
DES. Second, the underlying encryption algorithm in 3DES is the same as in DES. This algorithm has been subjected to more scrutiny
than any other encryption algorithm over a longer period of time, and no effective cryptanalytic attack based on the algorithm rather than

brute force has been found. Accordingly, there is a high level of confidence that 3DES is very resistant to cryptanalysis. If security were
the only consideration, then 3DES would be an appropriate choice for a standardized encryption algorithm for decades to come.
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The principal drawback of 3DES is that the algorithm is relatively sluggish in software. The original DES was designed for mid-1970s
hardware implementation and does not produce efficient software code. 3DES, which has three times as many rounds as DES, is
correspondingly slower. A secondary drawback is that both DES and 3DES use a 64-bit block size. For reasons of both efficiency and
security, a larger block size is desirable.

Because of these drawbacks, 3DES is not a reasonable candidate for long-term use. As a replacement, NIST in 1997 issued a call for
proposals for a new Advanced Encryption Standard (AES), which should have a security strength equal to or better than 3DES and
significantly improved efficiency. In addition to these general requirements, NIST specified that AES must be a symmetric block cipher
with a block length of 128 bits and support for key lengths of 128, 192, and 256 bits.

In a first round of evaluation, 15 proposed algorithms were accepted. A second round narrowed the field to 5 algorithms. NIST completed
its evaluation process and published a final standard (FIPS PUB 197) in November of 2001. NIST selected Rijndael as the proposed
AES algorithm. The two researchers who developed and submitted Rijndael for the AES are both cryptographers from Belgium: Dr. Joan
Daemen and Dr. Vincent Rijmen.

Ultimately, AES is intended to replace 3DES, but this process will take a number of years. NIST anticipates that 3DES will remain an
approved algorithm (for U.S. government use) for the foreseeable future.

AES Evaluation

It is worth examining the criteria used by NIST to evaluate potential candidates. These criteria span the range of concerns for the
practical application of modern symmetric block ciphers. In fact, two set of criteria evolved. When NIST issued its original request for
candidate algorithm nominations in 1997 , the request stated that candidate algorithms would be compared based on the factors
shown in w‘ (ranked in descending order of relative importance). The three categories of criteria were as follows:

® Security: This refers to the effort required to cryptanalyze an algorithm. The emphasis in the evaluation was on the
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practicality of the attack. Because the minimum key size for AES is 128 bits, brute-force attacks with current and projected
technology were considered impractical. Therefore, the emphasis, with respect to this point, is cryptanalysis other than a
brute-force attack.

Cost: NIST intends AES to be practical in a wide range of applications. Accordingly, AES must have high computational
efficiency, so as to be usable in high-speed applications, such as broadband links.
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Algorithm and implementation characteristics: This category includes a variety of considerations, including flexibility;
suitability for a variety of hardware and software implementations; and simplicity, which will make an analysis of security more
straightforward.



Table 5.1. NIST Evaluation Criteria for AES (September 12, 1997)

SECURITY

® Actual security: compared to other submitted algorithms (at the same key and block size).
® Randomness: the extent to which the algorithm output is indistinguishable from a random permutation on the input block.
® Soundness: of the mathematical basis for the algorithm's security.

® Other security factors: raised by the public during the evaluation process, including any attacks which demonstrate that
the actual security of the algorithm is less than the strength claimed by the submitter.

COST

® Licensing requirements: NIST intends that when the AES is issued, the algorithm(s) specified in the AES shall be
available on a worldwide, non-exclusive, royalty-free basis.

® Computational efficiency: The evaluation of computational efficiency will be applicable to both hardware and software
implementations. Round 1 analysis by NIST will focus primarily on software implementations and specifically on one
key-block size combination (128-128); more attention will be paid to hardware implementations and other supported
key-block size combinations during Round 2 analysis. Computational efficiency essentially refers to the speed of the
algorithm. Public comments on each algorithm's efficiency (particularly for various platforms and applications) will also be
taken into consideration by NIST.

® Memory requirements: The memory required to implement a candidate algorithmfor both hardware and software
implementations of the algorithmwill also be considered during the evaluation process. Round 1 analysis by NIST will
focus primarily on software implementations; more attention will be paid to hardware implementations during Round 2.
Memory requirements will include such factors as gate counts for hardware implementations, and code size and RAM
requirements for software implementations.

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

® [lexibility: Candidate algorithms with greater flexibility will meet the needs of more users than less flexible ones, and
therefore, inter alia, are preferable. However, some extremes of functionality are of little practical application (e.g.,
extremely short key lengths); for those cases, preference will not be given. Some examples of flexibility may include (but
are not limited to) the following:

a. The algorithm can accommodate additional key- and block-sizes (e.g., 64-bit block sizes, key sizes other than
those specified in the Minimum Acceptability Requirements section, [e.g., keys between 128 and 256 that are
multiples of 32 bits, etc.])

b. The algorithm can be implemented securely and efficiently in a wide variety of platforms and applications (e.g.,
8-bit processors, ATM networks, voice & satellite communications, HDTV, B-ISDN, etc.).

c. The algorithm can be implemented as a stream cipher, message authentication code (MAC) generator,
pseudorandom number generator, hashing algorithm, etc.

® Hardware and software suitability: A candidate algorithm shall not be restrictive in the sense that it can only be
implemented in hardware. If one can also implement the algorithm efficiently in firmware, then this will be an advantage in
the area of flexibility.

® Simplicity: A candidate algorithm shall be judged according to relative simplicity of design.
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Using these criteria, the initial field of 21 candidate algorithms was reduced fi 0 15 candidates and then to 5 candidates. By the time
“-ECHO

that a final evaluation had been done the evaluation criteria, as described in ||

, had evolved. The following criteria were used in

the final evaluation:

General security: To assess general security, NIST relied on the public security analysis conducted by the cryptographic
community. During the course of the three-year evaluation process, a number of cryptographers published their analyses of
the strengths and weaknesses of the various candidates. There was particular emphasis on analyzing the candidates with
respect to known attacks, such as differential and linear cryptanalysis. However, compared to the analysis of DES, the
amount of time and the number of cryptographers devoted to analyzing Rijndael are quite limited. Now that a single AES
cipher has been chosen, we can expect to see a more extensive security analysis by the cryptographic community.

Software implementations: The principal concerns in this category are execution speed, performance across a variety of
platforms, and variation of speed with key size.

Restricted-space environments: In some applications, such as smart cards, relatively small amounts of random-access
memory (RAM) and/or read-only memory (ROM) are available for such purposes as code storage (generally in ROM);
representation of data objects such as S-boxes (which could be stored in ROM or RAM, depending on whether
pre-computation or Boolean representation is used); and subkey storage (in RAM).

Hardware implementations: Like software, hardware implementations can be optimized for speed or for size. However, in
the case of hardware, size translates much more directly into cost than is usually the case for software implementations.
Doubling the size of an encryption program may make little difference on a general-purpose computer with a large memory,
but doubling the area used in a hardware device typically more than doubles the cost of the device.

Attacks on implementations: The criterion of general security, discussed in the first bullet, is concerned with cryptanalytic
attacks that exploit mathematical properties of the algorithms. There is another class of attacks that use physical
measurements conducted during algorithm execution to gather information about quantities such as keys. Such attacks
exploit a combination of intrinsic algorithm characteristics and implemeptation-dependent features. Examples of such attacks
are timing attacks and power analysis. Timing attacks are described inChapter 3. The basic idea behind power analysis
ﬂKOCH9§, ‘ is the observation that the power consumed by a smart card at any particular time during the
cryptographic operation is related to the instruction being executed and to the data being processed. For example,
multiplication consumes more power than addition, and writing 1s consumes more power than writing 0s.

Encryption versus decryption: This criterion deals with several issues related to considerations of both encryption and
decryption. If the encryption and decryption algorithms differ, then extra space is needed for the decryption. Also, whether the
two algorithms are the same or not, there may be timing differences between encryption and decryption.
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Key agility: Key agility refers to the ability to change keys quickly and with a minimum of resources. This includes both
subkey computation and the ability to switch between different ongoing security associations when subkeys may already be
available.

Other versatility and flexibility: [NECHO(] indicates two areas that fall into this category. Parameter flexibility includes ease
of support for other key and block sizes and ease of increasing the number of rounds in order to cope with newly discovered
attacks. Implementation flexibility refers to the possibility of optimizing cipher elements for particular environments.

Potential for instruction-level parallelism: This criterion refers to the ability to exploit ILP features in current and future
processors.

shows the assessment that NIST provided for Rijndael based on these criteria.



Table 5.2. Final NIST Evaluation of Rijndael (October 2, 2000)
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General Security
Rijndael has no known security attacks. Rijndael uses S-boxes as nonlinear components. Rijndael appears to have an adequate

security margin, but has received some criticism suggesting that its mathematical structure may lead to attacks. On the other hand,
the simple structure may have facilitated its security analysis during the timeframe of the AES development process.

Software Implementations

Rijndael performs encryption and decryption very well across a variety of platforms, including 8-bit and 64-bit platforms, and DSPs.
However, there is a decrease in performance with the higher key sizes because of the increased number of rounds that are
performed. Rijndael's high inherent parallelism facilitates the efficient use of processor resources, resulting in very good software
performance even when implemented in a mode not capable of interleaving. Rijndael's key setup time is fast.

Restricted-Space Environments

In general, Rijndael is very well suited for restricted-space environments where either encryption or decryption is implemented (but not
both). It has very low RAM and ROM requirements. A drawback is that ROM requirements will increase if both encryption and
decryption are implemented simultaneously, although it appears to remain suitable for these environments. The key schedule for
decryption is separate from encryption.

Hardware Implementations

Rijndael has the highest throughput of any of the finalists for feedback modes and second highest for non-feedback modes. For the
192 and 256-bit key sizes, throughput falls in standard and unrolled implementations because of the additional number of rounds. For
fully pipelined implementations, the area requirement increases, but the throughput is unaffected.

Attacks on Implementations

The operations used by Rijndael are among the easiest to defend against power and timing attacks. The use of masking techniques
to provide Rijndael with some defense against these attacks does not cause significant performance degradation relative to the other
finalists, and its RAM requirement remains reasonable. Rijndael appears to gain a major speed advantage over its competitors when
such protections are considered.

Encryption vs. Decryption

The encryption and decryption functions in Rijndael differ. One FPGA study reports that the implementation of both encryption and
decryption takes about 60% more space than the implementation of encryption alone. Rijndael's speed does not vary significantly
between encryption and decryption, although the key setup performance is slower for decryption than for encryption.

Key Agility

Rijndael supports on-the-fly subkey computation for encryption. Rijndael requires a one-time execution of the key schedule to
generate all subkeys prior to the first decryption with a specific key. This places a slight resource burden on the key agility of Rijndael.

Other Versatility and Flexibility

Rijndael fully supports block sizes and key sizes of 128 bits, 192 bits and 256 bits, in any combination. In principle, the Rijndael
structure can accommodate any block sizes and key sizes that are multiples of 32, as well as changes in the number of rounds that
are specified.

Potential for Instruction-Level Parallelism

Rijndael has an excellent potential for parallelism for a single block encryption.
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5.2. The AES Cipher

21 Much of the material in this section originally appeared ingTALOZ.

NEXT B+

The Rijndael proposal for AES defined a cipher in which the block length and the key length can be independently specified to be 128,
192, or 256 bits. The AES specificatio, same three key size alternatives but limits the block length to 128 bits. A number of AES
I-able 5.

parameters depend on the key length (|
be the one most commonly implemented.

Table 5.3. AES Parameters

Key size (words/bytes/bits)
Plaintext block size (words/bytes/bits)

Number of rounds
Round key size (words/bytes/bits)

Expanded key size (words/bytes)

Rijndael was designed to have the following characteristics:

® Resistance against all known attacks

4/16/128

4/16/128

10

4/16/128

44/176

® Speed and code compactness on a wide range of platforms

® Design simplicity

6/24/192

4/16/128

12

4/16/128

52/208

). In the description of this section, we assume a key length of 128 bits, which is likely to

8/32/256

4/16/128

14

4/16/128

60/240

shows the overall structure of AES. The input to the encryption and decryption algorithms is a single 128-bit block. In FIPS PUB

197, this block is depicted as a square matrix of bytes. This block is copied into the State array, which is modified
encryption or decryption. After the final stage, State is copied to an output matrix. These operations are depicted i

the 128-bit key is depicted as a square matrix of bytes. This key
bytes and the total key schedule is 44 words for the 128-bit key

s then exp

igure 5.2

at each stage of
[ reszd Smilarly,

anded into an array of key schedule words; each word is four
). Note that the ordering of bytes within a matrix is by column.

So, for example, the first four bytes of a 128-bit plaintext input to the encryption cipher occupy the first column of the in matrix, the second

four bytes occupy the second column, and so on. Similarly, the first four bytes of the expanded key, which form a word, occupy the first

column of the w matrix.
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Figure 5.1. AES Encryption and Decryption
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Figure 5.2. AES Data Structures

}View full size imaqei
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Before delving into details, we can make several comments about the overall AES structure:

1. One noteworthy feature of this structure is that it is not a Feistel structure. Recall that in the classic Feistel structure, half of the
data block is used to modify the other half of the data block, and then the halves are swapped. Two of the AES finalists,
including Rijndael, do not use a Feistel structure but process the entire data block in parallel during each round using
substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit words, w[i]. Four distinct words (128 bits) serve as
a round key for each round; these are indicated in figure 5.1.

3. Four different stages are used, one of permutation and three of substitution:
O substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block

O shiftRows: A simple permutation

O MixColumns: A substitution that makes use of arithmetic over GF(§)
O Add RoundKey: A simple bitwise XOR of the current block with a portion of the expanded key

El The structure is quite simple. For both encryption and decryption, the cipher begins with & ndKey stage, followed by
nine rounds that each includes all four stages, followed by a tenth round of three stages. fFigure 5.3 depicts the structure of a full
encryption round.

Figure 5.3. AES Encryption Round
(This item is displayed on page 144 in the print version)
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Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins and ends with an AddRoundKey stage.
Any other stage, applied at the beginning or end, is reversible without knowledge of the key and so would add no security.

The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be formidable. The other three stages
together provide confusion, diffusion, and nonlinearity, but by themselves would provide no security because they do not use
the key. We can view the cipher as alternating operations of XOR encryption (AddRoundKey) of a block, followed by scrambling
of the block (the other three stages), followed by XOR encryption, and so on. This scheme is both efficient and highly secure.

Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns stages, an inverse function is used in the
decryption algorithm. For the AddRoundKey stage, the inverse is achieved by XORing the same round key to the block, using

the result that A A B =B.

As with most block ciphers, the decryption algorithm makes use of the expanded key in reverse order. However, the decryption
algorithm is not identical to the encryption algorithm. This is a consequence of the particular structure of AES.

Once it is established that all four stages are reversible, it is easy to verify that decryption does recover the plaintext.
lays out encryption and decryption going in opposite vertical directions. At each horizontal point (e.g., the dashed line in
the figure), State is the same for both encryption and decryption.
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The final round of both encryption and decryption consists of only three stages. Again, this is a consequence of the particular
structure of AES and is required to make the cipher reversible.

We now turn to a discussion of each of the four stages used in AES. For each stage, we describe the forward (encryption) algorithm, the
inverse (decryption) algorithm, and the rationale for the stage. This is followed by a discussion of key expansion.

As was mentioned in , AES uses arithmetic in the finite field GF(f), with the irreducible polynomia m(x) = xEax x4 1.
The developers of Rijndael give as their motivation for selecting this one of the 30 possible irreducible polynomials of degree 8 that it is the
first one on the list given in [LIDL94].



1311 the remainder of this discussion, references to GF(2) refer to the finite field defined with this polynomial.

Substitute Bytes Transformation

Forward and Inverse Transformations

The forward substitute byte transformation, called SubBytes, is a simple table lookup ). AES defines a 16 x 16 matrix of
byte values, called an S-box ,, that contains a permutation of all possible 256 8-bit values. Each individual byte obtate is
mapped into a new byte in the following way: The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a
column value. Throw and column values serve as indexes into the S-box to select a unique 8-bit output value. For example, the

hexadecimal value
into the value {2A}.

4 {95} references row 9, column 5 of the S-box, which contains the value {2A}. Accordingly, the value {95} is mapped

“lin FIPS PUB 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention in
this chapter.
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Figure 5.4. AES Byte-Level Operations
(This item is displayed on page 145 in the print version)
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Table 5.4. AES S-Boxes
(This item is displayed on page 146 in the print version)
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L 1 z 3 4 5 i 7T b 9 A B|C|D|E|F

L 63 | C | 7| Bl F2| 6B | 6F | C5]) 0] M a7 | 2B | FE | D7 | AB | 76

1 |CA| 82| 0| 7D | FA | 39 | 47 | FO | AD| Dd | A2 | AF | 9C | Ad | 72 | O

2 BT | FIX| 93 | 26 | 36 | JF | FT | OC | M | AS | E5S | FI 71 | D& | 3l 15

3 | M| 7)) 23| C3)| 18| % | O5|9A | 07| 12 | %0 | E2|EB| 27 | B2 | 75

4 | 83|20 |1A|1B|6E |S5A )| AD| 52 | 3B | D6 | B3 | 29 | E3 | 2F | &4

L S53 1D 00 |EID| 20 | FC | Bl | SB | 6A | CB | BE | 39 | 4A | 4C | 58 | CF

i DO EF|AA| FB | 43 | 4D | 33 | 85 | &5 | PR | 02 | TF | 30 | 3C | 9F | AR

x T |5 | A 40 | 8F | 92 (9D | 28 | F5S | BC | Bs | DA | 21 0 | FF | F3 | D2

& |CD| ] 13 | EC| 5F | 97 | 44 17 | C4|AT|TE | 3D | o4 | 5D 19| 73

4 6 | &l dF | D) 22 [ 2A | 90 | 88 | 46 | EE| BS | 14 | DE| 5E | OB | DB

A BV 32 |3A|0A] 42| 06| 24 [ SC|C2IDIJAC] 62| 9 | 95| E4 | M

B | ET| C8)| 37 |eD | 8D | D5 | 4E | A9 | 6C | 56 | F4 | EA| 65 | 7TA | AE | (8

C | BA) T8 25 | 2E | 1C | A6 | B4 | OC6 | EB | DD | T4 IF | 48 | BID | BB | BA

I J0 | 3E| B5 | 66 | 48 | O3 Fa | OF | 41 BT | BB C)ID]| 9E

E |El| FB| 98 | 11 | &0 | DO | BE| ™4 | 9B | IE| & | E9 | CE| 55 | 28 | DF

F |8C | Al | 89 |0D | BF | E6 | 42 | 68 | 41 | 99 | 2D | OF | B0 | 54 | BB | 16

() Imverse 5-box

] 1 " | 3 4 5 b 7 B 0 A B|C|D| E F

L 52 00 | 6A | D5 30 | 36 | AS| 3% | BF | 40 | A3 | 9E | Bl K3 | 7 | FB

i TC|E3| W | 82|98 | 2F | FFF| 87 | 34 | BE | 43 4 | C4 | DE| B9 | CB

2 | M |TB| W 2| A8 C2| B|3D|EE|4C | 9 | DB | 42 | FA | O3 | 4E

3 08 | ZE| A1 | 66 | 28 | DO | 24 | B2 | T8 | 5B | A2 | 49 | 6D | BB | D | 25

+ 12 Fe | Fo | 4 | &% | 68 | 98 1o | D4 | A4 | 5C | CC| 5D | 65 | Bo | 92

£ G | Th | 48 | 50 | FD | ED | B9 | DA | SE | 15 | 46 | 57 | AT | 8D | 9D | &4

6 | 0 | DE|AB| 0 | 8C [BC | D3| 0A | F7 | E4 | 58 | 05 | BE | B3 | 45 | 0o

x 7 DOy 2C | IE| 8F | CA | 3F | OF | 02 | C1 | AF| BD | 03 | O 13 | BA | 6B

# | 3a | W 11 41 | 4F | 67 |DC)EA| 97 | F2 | CF | CE| FO | B4 | E6 | 73

9 96 | AC|) 4| 22 | ET |AD| 35| 85 | E2 | PO | 37T | EE | LC | 75 | DF | 6E

A |47 | FIL 1A 71 | ID ) 29 | C5) 82 | 6F | B7 | 62 | OE | AA| I8 | BE | 1B

B |FC| 56 | 3E | 4B | Ce (D2 | 79| 20 | 9A DB | C0 | FE| 78 | CD | 5A | F4

[ IF | DD AR | 33 | & | 07 | C7 ] 31 Bl 12 10 | 3% | 27 | 80 | BC | 5F

I &0 | 51 TF | A9 19 | BS | 4A | OD | 2D | E5 | TA | 9F | 93 | 9 | ©C | EF

E |AO| ED| 3B | 4D |AE| 2A | F5 | BO | OB | EB | BB | 3C | 83 | 53 | 99 | &l

F 17| 26| 04 | TE | BA | 77 | De | 26 | E1 | 69 14 [ 63 | 55| 21 | OC | 7D

Here is an example of the SubBytes transformation:

EA | 04 | 65 | 85 87 | F2 | 4D | 97
83 | 45 | 5D | 96 i g EC | 6E | 4C | 90
5C | 33 | 98 | BO 4A | C3 | 46 | ET
Cin AT AT S (e ™0 ne A
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The S-box is constructed in the following fashion:

1. |Initialize the S-box with the byte values in ascending sequence row by row. The first row contains {00}, {01}, {02},.... {OF}; the
second row contains {10}, {11}, etc.; and so on. Thus, the value of the byte at row x, columny is {xy}.

2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(28); the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled (b7, bg, bs, ba, bz, bz, b1, bo). Apply the following transformation to
each bit of each byte in the S-box:

Equation 5-1

bi = b;® h{:‘+4} mod 8 & hlli+5] mod 8 & IIr:]'I:!'+|[~-]| mod &8 & 'hll!"*'f} mod 8 & €

where cjis the ith bit of byte ¢ with the value {63}; that is, €7cecscac3cacico) = (01100011). The prime (') indicates that the
variable is to be updated by the value on the right. The AES standard depicts this transformation in matrix form as follows:

Equation 5-2

byl [1 0 0 0 1 1 1][by] [1]
b' 1 1 0 0 0 1 1|]| b 1
bl 1 110 0 0 1 1]||b, 0
byl _|1 1 1100 0 1|[by|, [0
b, 1 1 1 1 1 0 0 0}|b, 0
bt 01 1 1 1 1 0 0}]bs 1
bl 0 01 1 1 1 1 0f]bs 1
(b5l [0 0O 0O 1 1 1 1 1]|lb]| |[O]
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has to be interpreted carefully. In ordinary matrix multiplication each element in the product matrix is the sum of products
of the elements or one row and one column. In this case, eac| in the product matrix is the bitwise XOR of products of elements of
one row and one column. Further, the final addition shown in Equation (5.2] is a bitwise XOR.

5] For a brief review of the rules of matrix and vector multiplication, see the Math Refresher document and the

Computer Science Student Resource site at ll\/iIIiamstalIinqs.com/StudentSupport.html.

As an example, consider the input value {95}. The multiplicative inverse in GF(28) is {95}1 = {8A}, which is 10001010 in binary. Using

Equation (5.2],

ERS R RE BRI NEIE]



http://williamstallings.com/StudentSupport.html

The result is {2A}, which should appear in row {09} column {05} of the S-box. This is verified by checking [Table 5.44.
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The inverse substitute byte transformation, called InvSubBytes, makes use of the inverse S-box shown inTable 5.44. Note, for
example, that the input {2A} produces the output {95} and the input {95} to the S-box produces {2A}. The inverse S-box is constructed by

applying the inverse of the transformation in followed by taking the multiplicative inverse in GF(f). The inverse
transformation is:

b = + 2) mod 8 e b + 5) mod 8 $b(i+7)moda $di

where byte d = {05}, or 00000101. We can depict this transformation as follows:

0

by
b
b;
b3
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b7
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To see that InvSubBytes is the inverse of SubBytes, label the matrices in SubBytes and InvSubBytes as X and Y, respectively, and the

vector versions of constants ¢ and d as C and D, respectively. For some 8-bit vectorB, becomesB' =XB

C. We need to

show that Y(XB C) D = B. Multiply out, we must showYXB YC D =B. This becomes
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0 01 001 0 1][1t 00 0 1 1 1 1][8]
1 001 001 01 1 000 1 1 1[]H
c 1 00 1 0 0 1|1 1 1 0 0 0 1 1||8&
1 ¢ 1 0010 011 111 00 € 1|1b8s]_
010100101 111100 o0l[6|®
0 4 1 01 0 O 1|0 1 1 1 1 1 4 Of]bs




00 1 00 1 0 1] I

1 0 01 0 0 1 0|0 0

001 00 1 0 0 1]]1 1

1 01 0 0 1 0 0|0 0

o1 01001 0|/lo|®Ple]”

00 1 0 1 0 0 11 0

1 0 01 0 1 0 0]]1 0

o1 0 0 1 0 1 0]lo] [o0]

1 0 0 0 0 0 0 O][b] [1] 1] [be]
001 000 0 0 0|k 0 0 by
001 00 0 0 0llb | | bs
D001 0 0 0 0|k 0 0 bs
D{][}EiDDDm@U@D=m
000 0 0 1 0 0f]bs 0 0 bs
00 0 0 0 0 1 0ffb (0 0 b
0 00 00 0 0 1]k [0] [0O] [&

We have demonstrated that YX equals the identity matrix, and theYC = D, so thatYC @ D equals the null vector.

Rationale

The S-box is designed to be resistant to known cryptanalytic attacks. Specifically, the Rijndael developers sought a design that has a low

correlation_between input bits and output bits, y that the output cannot be described as a simple mathematical function of
the input [DAEMO1]]. In addition, the constant infguation (5.1] was chosen so that the S-box has no fixed points [S-box§) = a] and no

"opposite fixed points" [S-box(a) = H], where d is the bitwise complement ofa.

Of course, the S-box must be invertible, that is, IS-box[S-box(a)] = a. However, the S-box is not self-inverse in the sense that it is not true
that S-box(a) = 1S-box(a). For example, [S-box({95}) = {2A}, but I1S-box({95}) = {AD}.
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ShiftRows Transformation

Forward and Inverse Transformations

The forward shift row transformation, called ShiftRows, is depicted in. The first row of State is not altered. For the second



row, a 1-byte circular left shift is performed. For the third row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular
left shift is performed. The following is an example of ShiftRows:

87 | F2 | 4D | 97 oSN O o B 1
EC | 6E | 4C | 90 e 6E | 4C | 90 | EC
4A | C3 | 46 | E7 46 | E7 | 4A | C3
8C | D8 | 95 | Ab A6 | 8C | DB | 95

Figure 5.5. AES Row and Column Operations
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(b} Mix column transformation

The inverse shift row transformation, called InvShiftRows, performs the circular shifts in the opposite direction for each of the last three
rows, with a one-byte circular right shift for the second row, and so on.

Rationale



The shift row transformation is more substantial than it may first appear. This is because the State, as well as the cipher input and output,
is treated as an array of four 4-byte columns. Thus, on encryption, the first 4 bytes of the plaintext are copied to the first column of State,
and so on. Further, as will be seen, the round key is applied to State column by column. Thus, a row shift moves an individual byte from
one column to another, which is a linear distance_of a multjple of 4 bytes. Also note that the transformation ensures that the 4 bytes of one
column are spread out to four different columns. illustrates the effect.
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MixColumns Transformation

Forward and Inverse Transformations

The forward mix column transformation, called MixColumns, operates on each column individually. Each byte of a column is
mapped into a new valye that is a function of all four bytes in that column. The transformation can be defined by the following matrix
multiplication on State (Eigure 5.50):

Equation 5-3

02 03 01 O01]||so S So2 So3 So0 %01 So2 803
01 02 03 01|50 S0 %2 3| _ |50 S Si2 513
01 01 02 03|[s0 s %2 %3| [she s s 3
103 01 01 02|80 s 52 53 _-F:"i.n $3; S37 8 :1,;:._

Each element in theEfroduct matrix is the sum of products of elements of one row and one column. In this case, the individual additions

and multiplications™! are performed in GF(f). The MixColumns transformation on a single columnj(0 5 j 5 3) of State can be

expressed as

61 we follow the convention of FIPS PUB 197 and use the symbol - to indicate multiplication over the finite field GF?Z

and @ to indicate bitwise XOR, which corresponds to addition in GF(E).

Equation 5-4

So,j = (225p;) @ (3251;) D5, D53
$1,; = S0, @ (2051,;) @ (303,;) D 535
52 =50, D51, D (2252;) D (3=53)
53;= (3e50;) D51, D 52,; D (2253)



The following is an example of MixColumns:

87 | F2 | 4D | 97 47 | 40 | A3 | 4C
6E | 4C | 90 | EC » 37 | D4 | 70 | 9F
46 | E7 [4A | C3 94 | E4 | 3A | 42
Ab | 8C | DB | 95 ED | A5 | A6 | BC

Let us verify the first column of this example. Recall from Bection 4.4 that, in GE(® , addition is the bitwise XOR operation and that
multiplication can be performed according to the rule established in Equation (4.10). In particular, multiplication of a value byx (i.e., by {02})
can be implemented as a 1-bit left shift followed by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original value (prior
to the shift) is 1. Thus, to verify the MixColumns transformation on the first column, we need to show that

(02} - {87)) o= (3} - (681 fou) e @ el _un

©n @ ({02} - {6E}) $ ({03} - {46}) @ (A6} ={37}

87} @ (6E) @ ({02} - {46} @ ({03} - {A6}) =4

({03} - {87) D D . D 0 e - (D}
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For the first equation, we have {02} - {87} = (0000 1110) @ (0001 1011) = (0001 0101); and {03} - {6E} = {6E',$ ({02} - {6E}) = (0110

1110) (1101 1100) = (1011 0010). Then

{02} - {87} = 00010101
{03} - {6E} = 10110010
{46} = 01000110
{A6} = 10100110

0100 0111 = {47}

The other equations can be similarly verified.

The inverse mix column transformation, called InvMixColumns, is defined by the following matrix multiplication:

Equation 5-5
OE 0B 0D 09 (| 500 %01 %02 Sos3 560 501 502 503
09 0E OB 0D || 510 %11 %512 %3] _ | S0 Sy 12 813
N Ny (] N -~ - P -~ Ex atf . & at



L wrzr (R] e .)21” J:.I .:I:!:‘:!‘ .:IE“'.I' J:ﬂ_l“ 'j:!.,l .111:! .}213,
. - a a . ol o f F
L OB 0D 09 OE J Lh,n S50 $32 -"3.3J L-" 30 531 S32 S F.EJ

It is not immediately clear that is the inverse of . We need to show that:

OE OB OD 09 |[02 03 01 01 || son So1 Soz Sos %o Foi SE Sia
09 OE OB OD |01 02 03 Ol (|59 Sia %2 53| _ | S0 5iq 512 513
0D 09 O0E OB |01 01 02 03 ||:p 24 %2 Si3| |80 S0 B2 53
OB 0D 09 OE|[03 01 01 02| 530 $35 832 53 fio° $y Fa By

which is equivalent to showing that:

Equation 5-6
'0E OB oD 09|02 03 01 o1 |1 0 0]
09 OE OB oD|lot 02 03 o1 0 0 0

op 09 O0E OB |01 01 02 03 0
0B 0D 09 OE |03 01 01 02 0

=0 = O
=

he inverse transformation matrix times the forward transformation matrix equals the identity matrix. To verify the first column of

hat i
, we need to show that:

({0E} - {02}) @ {0B} @ {ob} @ ({09} - {03}) = {01}

({09} - {02}) @ {OE} @ {oB} @ (fob} - {03}) = {00}
({oby} - {02}) @ {09} @ {OE} @ (foB} - {03}) = {00}

({oB} - {02}) $ {oD} $ {09} @ ({0E} - {03}) = {00}
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For the first equation, we have {OE} - {oz})$ 00011100; and {09} - {03} = {09}$ ({09} - {02}) = 00001001 $ 00010010 =
00011011. Then

{oE} - {02} = 00011100
{oB} = 00001011
{oD} = 00001101
{09} - {03} = 00011011

00000001



The other equations can be similarly verified.

The AES document describes another way of characterizing the MixColumns transformation, which is in terms of polynomial arithmetic. In
the standard, MixColumns is defined by considering each column of State to be a four-term polynomial with coefficients in GF(E). Each

column is multiplied modulo (x4 + 1) by the fixed polynomiala(x), given by

Equation 5-7

a(x) = {03}x + {01}x% + {01}x + {02}

demonstrates that multiplication of etate by a(x) can be written as the matrix multiplication o.
Fquation (5.5

Similarly, it can be seen that the transformation in Equation (5.5] corresponds to treating each column as a four-term polynomial and
multiplying each column by b(x), given by

Equation 5-8

b(x) = {OB}x® + {0D}x* + {09}x + {0E}

It can readily be shown that b(x) = at (x) mod (x4 +1).

Rationale

The coefficients of the matrix in are based on a linear code with maximal distance between code words, which ensures a
good mixing among the bytes of each column. The mix column fransformation combined with the shift row transformation ensures that
after a few rounds, all output bits depend on all input bits. See [DAEM99] for a discussion.

In addition, the choice of coefficients in MixColumns, which are all {01}, {02}, or {03}, was influenced by implementation considerations. As
was discussed, multiplication by these coefficients involves at most a shift and an XOR. The coefficients in InvMixColumns are more
formidable to implement. However, encryption was deemed more important than decryption for two reasons:

1. Forthe CFB and OFB cipher modes and @; described in , only encryption is used.

2. As with any block cipher, AES can be used to construct a message authentication code (Part Two), and for this only encryption
is used.

AddRoundKey Transformation

Forward and Inverse Transformations



In the forward add rou 1sformation, called AddRoundKey, the 128 bits ofState are bitwise XORed with the 128 bits of the
round key. As shown in Figure 5.4K, the operation is viewed as a  columnwise operation between the 4 bytes of aState column and one
word of the round key; it can also be viewed as a byte-level operation. The following is an example of AddRoundKey:
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47 | 40 | A3 | 4C AC| 19 | 28 | 57 EB| 59 | 8B | IB
37 Bl 70 [FOES . | 77 FEAS| D1 FSCH 40 | ZE | A1 | C3
04 | E4 | 3A | 42 ne 66 |[DC | 29 | 0O F2 | 38 13 | 42
ED | A5 | A6 | BC F3 | 21 | 41 | 6A IE| 84 | E7T | D2

The first matrix is State, and the second matrix is the round key.

The inverse add round key transformation is identical to the forward add round key transformation, because the XOR operation is its
own inverse.

Rationale

The add round key transformation is as simple as possible and affects every bit of State. The complexity of the round key expansion, plus
the complexity of the other stages of AES, ensure security.

AES Key Expansion

Key Expansion Algorithm

The AES key expansion algorithm takes as input a 4-word (16-byte) key and produces a linear array of 44 words (176 bytes). This is
sufficient to provide a 4-word round key for the initial AddRoundKey stage and each of the 10 rounds of the cipher. The following
pseudocode describes the expansion:

View full width

KeyExpansion (byte key[16], word w([44])

{
word temp
for (i=0; i< 4; i++) w[i] = (key[4*i],
key[4*i+1],

key[4*i+2],
key[4*i+3]);

for (i=4;1<44;i++)

{

temp =w[i 1];

if (i mod 4 = 0) temp = SubWord (RotWord (temp))

Rcon[i/4];



wli] = w[i4] ﬁ temp

}

The key is copied into the first four words of the expanded key. The remainder of the expanded key is filled in four words at a time. Each
added word wl[i] depends on the immediately preceding word,w][i 1], and the word four positions backw[i 4]. In three_out of four cases, a
simple XOR is used. For a word whose position in the w array is a multiple of 4, a more complex function is usedfigure 5.4 illustrates the
generation of the first eight words of the expanded key, using the symbol g to represent that complex function. The function g consists of
the following subfunctions:
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1. RotWord performs a one-byte circular left shift on a word. This means that an input word [b0, b1, b2, b3] is transformed into [b1,
b2, b3, b0].

2. SubWord performs a byte substitution on each byte of its input word, using the S-box ([Table 5.48).

3. The result of steps 1 and 2 is XORed with a round constant, Rcon([j].

Figure 5.6. AES Key Expansion
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The round constant is a word in which the three rightmost bytes are always 0. Thus the effect of an XOR of a word with Rcon is to only
perform an XOR on the leftmost byte of the word. The round constant is different for each round and is defined as Rcon[j] = (RCJ]], 0, 0, 0),

with RC[1] = 1, RC[j] = 2 - RCJj - 1] and with multiplication defined over the field GF(28). The values of RC[j] in hexadecimal are

RCI[j] 01 02 04 08 10 20 40 80 1B 36

For example, suppose that the round key for round 8 is
EA D2 7321 B58D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated as follows:

i (decimal) temp After RotWord  After SubWord Rcon (9) After XOR wli 4] wli] = temp
with Rcon )
wli 4]
36 7F8D292F 8D292F7F 5DA515D2 1B000000 46A515D2 EAD27321 AC7766F3
Rationale

The Rijndael developers designed the expansion key algorithm to be resistant to known cryptanalytic attacks. The inclusion of a
round-dependent round constant eliminates the symmetry, or similayity. between the ways in which round keys are generated in
different rounds. The specific criteria that were used are as follows dAEMQ :
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® Knowledge of a part of the cipher key or round key does not enable calculation of many other round key bits

® Aninvertible transformation [i.e., knowledge of any Nk consecutive words of the Expanded Key enables regeneration the entire
expanded key (Nk = key size in words)]

® Speed on a wide range of processors

® Usage of round constants to eliminate symmetries

® Diffusion of cipher key differences into the round keys; that is, each key bit affects many round key bits

® Enough nonlinearity to prohibit the full determination of round key differences from cipher key differences only

® Simplicity of description

The authors do not quantify the first point on the preceding list, but the idea is that if you know less than Nk consecutive words of either
the cipher key or one of the round keys, then it is difficult to reconstruct the remaining unknown bits. The fewer bits one knows, the more
difficult it is to do the reconstruction or to determine other bits in the key expansion.



Equivalent Inverse Cipher

As was mentioned, the AES decryption cipher is not identical to the encryption cipher ). That is, the sequence of
transformations for decryption differs from that for encryption, although the form of the key schedules for encryption and decryption is the
same. This has the disadvantage that two separate software or firmware modules are needed for applications that require both encryption
and decryption. There is, however, an equivalent version of the decryption algorithm that has the same structure as the encryption
algorithm. The equivalent version has the same sequence of transformations as the encryption algorithm (with transformations replaced by
their inverses). To achieve this equivalence, a change in key schedule is needed.

Two separate changes are needed to bring the decryption structure in line with the encryption structure. An encryption round has the
structure SubBytes, ShiftRows, MixColumns, AddRoundKey. The standard decryption round has the structure InvShiftRows, InvSubBytes,
AddRoundKey, InvMixColumns. Thus, the first two stages of the decryption round need to be interchanged, and the second two stages of
the decryption round need to be interchanged.

Interchanging InvShiftRows and InvSubBytes

InvShiftRows affects the sequence of bytes in State but does not alter byte contents and does not depend on byte contents to perform its
transformation. InvSubBytes affects the contents of bytes in State but does not alter byte sequence and does not depend on byte
sequence to perform its transformation. Thus, these two operations commute and can be interchanged. For a given State Sj,

InvShiftRows [InvSubBytes (Sj)] = InvSubBytes [InvShiftRows (Sj)]
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Interchanging AddRoundKey and InvMixColumns

The transformations AddRoundKey and InvMixColumns do not alter the sequence of bytes inState. If we view the key as a sequence
of words, then both AddRoundKey and InvMixColumns operate on State one column at a time. These two operations are linear with
respect to the column input. That is, for a given State Sjand a given round keyw;:

InvMixColumns (S; $ wj) = [InvMixColumns (Sj)] $ [InvMixColumns (w))]

To see this, suppose that the first column of State Sjis the sequence (yo, y1, Y2, y3) and the first column of the round keyw; is (ko, k1, k2,
k3). Then we need to show that

0E OB OD 09 |[w, ® K OE OB 0D 09 || 0E OB 0D 09 || &,
09 OE OB 0D || v, @ k| _| 09 OE OB OD ||y | | 09 OE OB 0D || &,
0D 09 OE 0B || » @ k| | 0D 09 0E 0B ||y [F| oD 09 0E 0B || &
0B 0D 09 0E || v @ k; 0B 0D 09 OE || v 0B 0D 09 OE || s

Let us demonstrate that for the first column entry. We need to show that:

[{OE} - (yo @ ko)] @ [{0B} - (1 @ k)] @ [{OD} - (y2 @ k2)] @ ({09} - (s @ ka)]
= [{OE} - yo] @ [{0B} - y1] @ [{OD} - y2] $ [{09} - ys]

Ty



L7 [[{0E} - ko] a [{0B} - ki] $ [{oD} - ko] @ [{09} - ka]

This equation is valid by inspection. Thus, we can interchange AddRoundKey and InvMixColumns, provided that we first apply
InvMixColumns to the round key. Note that we do not need to apply InvMixColumns to the round key for the input to the first
AddRoundKey transformation (preceding the first round) nor to the last AddRoundKey transformation (in round 10). This is because these
two AddRoundKey transformations are not interchanged with InvMixColumns to produce the equivalent decryption algorithm.

illustrates the equivalent decryption algorithm.

Figure 5.7. Equivalent Inverse Cipher
(This item is displayed on page 158 in the print version)
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The Rijndael proposal [DAEM9Y] provides some suggestions for efficient implementation on 8-bit processors, typical for current smart

cards, and on 32-bit processors, typical for PCs.

8-Bit Processor

AES can be implemented very efficiently on an 8-bit processor. AddRoundKey is a bytewise XOR operation. ShiftRows is a simple byte
shifting operation. SubBytes operates at the byte level and only requires a table of 256 bytes.

The transformation MixColumns requires matrix multiplication in the field GF(28), which means that all operations are carried out on bytes.
MixColumns only requires multiplication by {02} and {03}, which, as we have seen, involved simple_shifts, condition
This can be implemented in a more efficient way that eliminates the shifts and conditional XORs. Equation Set (5.4

for the MixColumns transformation on a single column. Using the identity {03} - x = ({02} - x)

follows:

| XORs, and XORs.
shows the equations

@ X, we can rewrite Equation Set (5.4] as
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Equation 5-9

I'mp = 5y; D 51; D 52, D 53

-‘-'*'l:'u = 5, @ Imp @ |2+ (-i'n,,r' @D 51,;':1

51 = 51, @ Tmp @ [2+ (51; D 52
§2j = 52;@® Tmp @ [2+ (52; D 53
S:H = 5@ ITmp @ [2+ (33,;' ® 80,

is verified by expanding and eliminating terms.
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The multiplicati 2} involves a shift and a conditional XOR. Such an implementation may be vulnerable to a timing attack of the sort
described in Section 3.4. To counter this attack and to increase processing efficiency at the cost of some storage, the multiplication can be
replaced by a table lookup. Define the 256-byte table X2, such that X2[i] = {02} -i. Then can be rewritten as
Tmp = so, j @ S1, | $52,1 $33,j
S0,j=150,] @ Tmp $X2[So,j $Sl,j]
s'1,C=8S1,] @ Tmp $X2[sl,j $ s2,]]

§2,C=152,] $ Tmp $X2[52,J' $ s3, ]]
s'3,] =83,] @ Tmp ®X2[S3,j $so,j]

32-Bit Processor

The implementation described in the preceding subsection uses only 8-bit operations. For a 32-bit processor, a more efficient
implementation can be achieved if operations are defined on 32-bit words. To show this, we first define the four transformations of a round
in algebraic form. Suppose we begin with a State matrix consisting of elementsa;jj and a round key matrix consisting of element; ;. Then
the transformations can be expressed as follows:

SubBytes bij = Sfaij]
Co, j by,
Cl 2
ShiftRows L ! == . / I
s, Dy j-2
_C_".IJ‘;_ _b::!"-l'_-"'_

do;] [02 03 01 01][co,
01 02 03 O1||c,

. = 3 [P
MixColumns —
dy ; 01 01 02 03]| ¢
| d3 |03 001 1 02 )] ey

€n, j dlf]', i kll i

AddRoundKey €1, 25 dld EB' kl,j

€2, j dy,j ky ;

_E:‘i.j_ _dlf_ k_qd'_

In the ShiftRows equation, the column indices are taken mod 4. We can combine all of these expressions into a single equation:

r. —l rﬂ"t ¥ i .ru—”_ or o 1 —I r]. —I



€, j UL
€1,; | _ 01
(] N 01
€3 ] o 03

L

02
01
01

Ll

03
02
01

Ll

01

02

— —

«Slag;] | ® 01

03
02

i‘.i[uf-l'ulﬂ
Slay, j-1]
Slas ;-]
Sla;, j—'j]__

Sla; ;1] | ®

2 SIHZJ 2]

01 [ koj
01 k;
- S . 4y
"f 2 ] _»‘-Z;u,r i
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In the second equation, we are expressing the matrix multiplication as a linear combination of vectors. We define four 256-word

(1024-byte) tables as follows:

02
i
ol
03

Tilx] = *5[x]

3
2
Ll
L]

Tilx] = + 5]

Blx] =

T;[.r| -

Thus, each table takes as input a byte value and produces a column vector (a 32-bit word) that is a function of the S-box entry for that byte
value. These tables can be calculated in advance.

We can define a round function operating on a column in the following fashion:

50, j
I
51,

'
L

X
st

= ?f}[ﬁn.j] @ Tl[ﬁl.j—l] @ Tz[ﬁz,j—z] @ 75[53.1-3] @

As a result, an implementation based on the preceding equation requires only four table lookups and four XORs per column per round,
plus 4 Kbytes to store the table. The developers of Rijndael believe that this compact, efficient implementation was probably one of the
most important factors in the selection of Rijndael for AES.

NEXT B
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[Page 160 (continued)]

5.3. Recommended Reading and Web Sites

The most thorough description of A o far available is the book by the developers of AES, [DAEMO0Z]. The authors also provide a brief
baEmod)

description and design rationale in | NDO04] is a rigorous mathematical treatment of AES and its cryptanalysis.

DAEMOJ Daemen, J., and Rijmen, V. "Rijndael: The Advanced Encryption Standard.Dr. Dobb's Journal, March
2001.

DAEMO0Z Daemen, J., and Rijmen, V.The Design of Rijndael: The Wide Trail Strategy Explained. New York,
Springer-Verlag, 2002.

ANDO04 Landau, S. "Polynomials in the Nation's Service: Using Algebra to Design the Advanced Encryption
Standard." American Mathematical Monthly, February 2004.
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§ Recommended Web Sites

® AEShome page:NIST's page on AES. Contains the standard plus a number of other relevant documents.

® The AES Lou nge: Contains a comprehensive bibliography of documents and papers on AES, with access to electronic copies.
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[Page 161 (continued)]

5.4. Key Terms, Review Questions, and Problems

Key Terms

IAdvanced Encryption Standard (AESJ

Llational Institute of Standards and Technology (NISTI

Review Questions

5.1 What was the original set of criteria used by NIST to evaluate candidate AES ciphers?
5.2 What was the final set of criteria used by NIST to evaluate candidate AES ciphers?
5.3 What is power analysis?

5.4 What is the difference between Rijndael and AES?

55 What is the purpose of the State array?

5.6 How is the S-box constructed?

5.7 Briefly describe SubBytes.

5.8 Briefly describe ShiftRows.

5.9 How many bytes inState are affected by ShiftRows?

5.10 Briefly describe MixColumns.



5.11 Briefly describe AddRoundKey.

5.12 Briefly describe the key expansion algorithm.

5.13 What is the difference between SubBytes and SubWord?

5.14 What is the difference between ShiftRows and RotWord?

5.15 What is the difference between the AES decryption algorithm and the equivalent inverse cipher?

Problems
5.1 In the discussion of MixColumns and Inverse MixColumns, it was stated that
b(x) = al(x) mod (x4 +1)
3 2 3 2 .
where a(x) = {03}x~ + {01}x~ + {01}x + {02} and b(x) = {03}x"~ + {OD}x" + {09}x + {OE}. Show that this is true.
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5.2

1. Whatis {01}" in GF(D)?

2. Verify the entry for {01} in the S-box.

5.3 Show the first eight words of the key expansion for a 128-bit key of all zeros.

54 Given the plaintext {000102030405060708090A0BOCODOEOF} and the key
{01010101010101010101010101010101},

a. Show the original contents of State, displayed as a 4 x 4 matrix.
b. Show the value of State after initial AddRoundKey.

c. Show the value of State after SubBytes.

d. Show the value of State after ShiftRows.

e. Show the value of State after MixColumns.

55 Verify Equation (5.11) That is show thatx' (x4 +1)= X mod 4



5.6 Compare AES to DES. For each of the following elements of DES, indicate the comparable element in AES
or explain why it is not needed in AES.

a. XOR of subkey material with the input to the f function
b. XOR of the f function output with the left half of the block
c. The ffunction

d. Permutation P

e. Swapping of halves of the block

5.7 In the subsection on implementation aspects, it is mentioned that the use of tables helps thwart timing
attacks. Suggest an alternative technique.

5.8 In the subsection on implementation aspects, a single algebraic equation is developed that describes the
four stages of a typical round of the encryption algorithm. Provide the equivalent equation for the tenth round.

5.9 Compute the output of the MixColumns transformation for the following sequence of input bytes "67 89 AB
CD". Apply the InvMixColumns transformation to the obtained result to verify your calculations. Change the
first byte of the input from '67' to '77', perform the MixColumns transformation again for the new input, and
determine how many bits have changed in the output. Note: You can perform all calculations by hand or write
a program supporting these computations. If you choose to write a program, it should be written entirely by
you; no use of libraries or public domain source code is allowed in this assignment.

5.10 Use the key 1010 0111 0011 1011 to encrypt the plaintext "ok" as expressed in ASCII, that is 0110 1111
0110 1011. The designers of S-AES got the ciphertext 0000 0111 0011 1000. Do you?

511 Show that the matrix given below, with entries in GF(24), is the inverse of the matrix used in the MixColumns

step of S-AES.

2+ 1 X
X o+ 1

5.12 Carefully write up a complete decryption of the ciphertext 0000 0111 0011 1000, using the key 1010 0111
0011 1011 and the S-AES algorithm. You should get the plaintext we started with in Problem 5.10. Note that
the inverse of the S-boxes can be done with a reverse table lookup. The inverse of the MixColumns step is
given by the matrix in the previous problem.

Programming Problems

5.13 Create software that can encrypt and decrypt using S-AES. Test data: a binary plaintext of 0110 1111 0110
1011 encrypted with a binary key of 1010 0111 0011 1011 should give a binary ciphertext of 0000 0111 0011
1000 less ecb $$$). Decryption should work correspondingly



5.14 Implement a differential cryptanalysis attack on 1-round S-AES.

e pney NEXT
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Appendix 5A Polynomials with Coefficients in GF(28)

In , we discussed polynomial arithmetic in which the coefficients are iZp and the polynomials are defined modulo a polynomial
M(x) whose highest power is some integern. In this case, addition and multiplication of coefficients occurred within the fieldZp; that is,
addition and multiplication were performed modulo p.

The AES document defines polynomial arithmetic for polynomials of degree 3 or less with coefficients in GF(28). The following rules apply:

1. Addition is performed by adding corresponding coefficients in GF(28). As was pointed out, if we treat the elements

of GF(28) as 8-hit strings, then addition is equivalent to the XOR operation. So, if we have

Equation 5-8

3 3
-ﬁ'(.].'::l = X" + I X7 T d1 X T dy

Equation 5-9

b[l’} = b_q_lj 2 g bg_\fl T blI h[:,

then

a(x) + b(x) = (a3 $b3)x3 + (a2 $ b2)x2 + (a1 $ b1)x + (a0 @bo)

2. Multiplication is performed as in ordinary polynomial multiplication, with two refinements:
a. Coefficients are multiplied in GF(28).
b. The resulting polynomial is reduced mod (x4 +1).

We need to keep straight which polynomial we are talking about. Recall from that each element of GF(ZB) is a polynomial of
degree 7 or less with binary coefficients, and multiplication is carried out modulo a polynomial of degree 8. Equivalently, each element of

GF(28) can be viewed as an 8-bit byte whose bit values correspond to the binary coefficients of the corresponding polynomial. For the sets
defined in this section, we are defining a polynomial ring in which each element of this ring is a polynomial of degree 3 or less with

coefficients in GF(28), and multiplication is carried out modulo a polynomial of degree 4. Equivalently, each element of this ring can be

viewed as a 4-byte word whose byte values are elements of GF(28) that correspond to the 8-bit coefficients of the corresponding
polynomial.

We denote the modular product of a(x) and b(x) by a(x) @b(x). To compute d(x) = a(x) @ b(x), the first step is to perform a
multiplication without the modulo operation and to collect coefficients of like powers. Let us express this as ¢(x) = a(x) x b(x) Then


file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Equation 5-10

cx) =cx*+ X +axt+ar taoxrt+ax+g

where

co=ag -bo

c1=(al -bg) $(a0 -b1)

c2 = (a2 -bo) $(a1-b1) $(ao-b2)
c3 = (a3 -bo) @(az -b1) @ (a1 -b2) @ (a0 - b3)
c4=(a3-b1) $(a2 -b2) @ (a1 - ba)

c5= (a3 -h2) $(612 -b3)
c6= (a3 -bg)
The final step is to perform the modulo operation:
4
d(x) = c¢(x) mod (x "+ 1)
That is, d(x) must satisfy the equation
. @
c(x) = [(x "+ 1) xq(x)] d(x)

such that the degree of d(x) is 3 or less.
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A practical technique for performing multiplication over this polynomial ring is based on the observation that

Equation 5-11

In‘ mod |:I4 + I} — _t.l' mod 4

If we now combine guations (5.10) and ), we end up with

d(x) = c(x) mod (x4 +1) = [cex6 + (:5x5 + c4x4 + c3x3 + c2x2 + c1x + co] mod (x4 +1)

= c3x3 +(c2 @ce)x2 +(c1 $ c5)x + (co $ c4)

Expanding the cj coefficients, we have the following equations for the coefficients ofd(x):



d0=(a0-b0)$(a3-b1) $(6\) -b2) $(6\1-133)

d1 = (a1 - bo) $(610-b1) $(613-132) $(61) -b3)
d2 = (a2) - bo) $(a1-b1) $(30-b2) $(a3-b3)
d3 = (a3 - bo) $(a) -b1) $(al-bZ) $(610-133)

This can be written in matrix form:

Equation 5-12

dy iy 4y dy Oy by

diy | |ay ay a; ay || b

ds N a; ap ay az || b;
dx | |as a a ap || bs|

MixColumns Transformation

In the discussion of Mi it was stated that there were two equivalent ways of defining the transformation. The first is the matrix
multiplication shown in Equation (5.3], repeated here:

02 03 01 O1||spe Soa Soz %03 S0 Sor Sp2  S03
01 02 03 01 10 Sy %12 513 | St S11 S12 813
01 01 02 03||s0 1 $2 %a3| |sho s $h2 si3

B 03 01 01 02 JLL%0 %1 %2 53] LS ;a_n 5-'_’1:1| $ha 853 ]

The second method is to treat each column of State as a four-term polynomial with coefficients in GF(?). Each column is multiplied modulo

(x4 + 1) by the fixed polynomiala(x), given by
_ 3 2
a(x ={03}x" + {01}x " + {01}x + {02}

From , we haveii = iO3|' ai = {01}; ap = {02}. For thejth column of State, we have the polynomial coj(x) = sg,jx3 + sz,sz +

s1,jx +s0,j. Substituting into Equation (5.12), we can expressd(x) = a(x) x colj(x) as

d.:] fdy dy d» S, 02 03 01 01 ¥, f
d] iy dy d3 51,5 | _ 01 02 03 O1 .,



(- a2 & Ay Ay ‘Tl_? Ul 01 U2
d_“., iy 2 dy Slj 03 01 01
which is equivalent to

Multiplication by x

Consider the multiplication of a polynomial in the ring byk: c(x) = x ®b(x). We have

c(x) =x @b(x) =[xx (b3x3) + bzx2 + b1x + bg)] mod (x4 +1)

15
02

Il

52, JJ
53,' i
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= (b3 + b2 + b1x> + box) mod (< + 1)

= box> + bix2 + box + b3

Thus, multiplication by x corresponds to a 1-byte circular left shift of the 4 bytes in the word representing the polynomial. If we represent

the polynomial as a 4-byte column vector, then we have

C 00 00 00 O1][b,
01 00 00 00|| b
¢ 00 01 00 00]|b
00 00 01 00]]| b

NEXT W
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Appendix 5B Simplified AES

Simplified AES (S-AES) was developed by Professor Edward Schaefer of Santa Clara University and several of his students . It
is an educational rather than a secure encryption algorithm. It has similar properties and structure to AES with much smaller parameters.
The reader might find it useful to work through an example by hand while following the discussion in this appendix. A good grasp of S-AES
will make it easier for the student to appreciate the structure and workings of AES.

Overview

illustrates the overall structure of S-AES. The encryption algorithm takes a 16-bit block of plaintext as input and a 16-bit key and
produces a 16-bit block of ciphertext as output. The S-AES decryption algorithm takes an 16-bit block of ciphertext and the same 16-bit
key used to produce that ciphertext as input and produces the original 16-bit block of plaintext as output.
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Figure 5.8. S-AES Encryption and Decryption
(This item is displayed on page 165 in the print version)

lView full size image|
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The encryption algorithm involves the use of four different functions, or transformations: add key (AK) nibble substitution (NS), shift row
(SR), and mix column (MC), whose operation is explained subsequently.

We can concisely express the encryption algorithm as a compositiorﬂ of functions:

"] pefinition: If f and g are two functions, then the function F with the equation y= K] = g[f(x)] is called the
composition of f and g and is denoted as F =g ° f.

AKz °© SR ®NS © A1 © MC © SR © NS ° A
so that AKg is applied first.

The encryption algorithm is organized into three rounds. Round 0 is simply an add key round; round 1 is a full round of four functions; and
round 2 contains only 3 functions. Each round includes the add key function, which makes use of 16 bits of key. The initial 16-bit key is
expanded to 48 bits, so that each round uses a distinct 16-bit round key.

Each function operates on a 16-bit state, treated as a 2 x 2 matrix of nibbles, where one nibble equals 4 bits. The initial value of the state
matrix is the 16-bit plaintext; the state matrix is modified by each subsequent function in the encryption process, producing after the last
function the 16-bit ciphertext. As‘ shows, the ordering of nibbles within the matrix is by column. So, for example, the first eight
bits of a 16-bit plaintext input to the encryption cipher occupy the first column of the matrix, and the second eight bits occupy the second
16-bit key is similarly organized, but it is somewhat more convenient to view the key as two bytes rather than four nibbles
(). The expanded key of 48 bits is treated as three round keys, whose bits are labeled as followsk0 = k0...k15; K1 = k16...k31;

K2 =k32...k47.




Figure 5.9. S-AES Data Structures
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shows the essential elements of a full round of S-AES.

Figure 5.10. S-AES Encryption Round
(This item is displayed on page 167 in the print version)
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Decryption is also shown in and is essentially the reverse of encryption:

AKg °INS°ISR°IMC ° A1 °INS° ISR ° X>»
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in which three of the functions have a corresponding inverse function: inverse nibble substitution (INS), inverse shift row (ISR), and
inverse mix column (IMC).

S-AES Encryption and Decryption

We now look at the individual functions that are part of the encryption algorithm.

Add Key

The add key function consists of the bitwise XOR of the 16-bit state matrix and the 16-bit round key. depicts this as a
columnwise operation, but it can also be viewed as a nibble-wise or bitwise operation. The following is an example:

A 4 @ - 5 . 8 |
7 B ~ | D S A BT
state matrix key

Figure 5.11. S-AES Transformations
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The inverse of the add key function is identical to the add key function, because the XOR operation is its own inverse.
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Nibble Substitution

he nibble substitution function is a simple table lookup ). AES defines a 4 x 4 matrix of nibble values, called an S-box
(, that contains a permutation of all possible 4-bit values. Each individual nibble of the state matrix is mapped into a new nibble
in the following way: The leftmost 2 bits of the nibble are used as a row value and the rightmost 2 bits are used as a column value. These
row and column values serve as indexes into the S-box to select a unique 4-bit output value. For example, the hexadecimal value A
references row 2, column 2 of the S-box, which contains the value 0. Accordingly, the value A is mapped into the value 0.

Table 5.5. S-AES S-Boxes

Note: Hexadecimal numbers in shaded boxes; binary numbers in unshaded boxes.
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Here is an example of the nibble substitution transformation:

8 | 1 6 | 4
A B o [

The inverse nibble substitution function makes use of the inverse S-box shown in[lable 5.58. Note, for example, that the input O produces
the output A, and the input A to the S-box produces 0.

Shift Row

The shift row function performs a one-nibble circular shift of the second row of the state matrix; the first row is not altered .
The following is an example:

6 4 6 4

0 C L% ()

The inverse shift row function is identical to the shift row function, because it shifts the second row back to its original position.



Mix Column

The mix column function operates on each column individually. Each nibble of a column is mapped into a new value that is a function of
both nibbles in that column. The transformation can be defined by the following matrix multiplication on the state matrix 1 :

1 4|80 Soa S0, 551-1
4 1[|80 Sia Sio S

Performing the matrix multiplication, we get:
S0,0 = S0,0 $(4 -$1,0)
$1,0=(4-50,0) $81,0
S0,1=150,1 $(4 -S1,1)

S1,1=(4-50,1) $81,1
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Where arithmetic is performed in GF(24), and the symbol - refers to multiplication in GF(?). Appendix E provides the addition and

multiplication tables. The following is an example:

1 4(|6 4 3 4
4 1]lC 0 T 3

The inverse mix column function is defined as follows:

g 2 S[:.?.:] S[],l SEU:I IEI{L]
2 9150 S Sto Su

We demonstrate that we have indeed defined the inverse in the following fashion:

9 2 1 4 Sr_m ] 5( 11 1 U 51 b il
2 9114 111S5 Sia 0 105

Sl'!.]
51 1



The preceding matrix multiplication makes use of the following results in GF(24): 9+(2-4)=9+8=1;(9-4)+2=2+2=0.These
operations can be verified using the arithmetic tables in Appendix E or by polynomial arithmetic.

The mix column function is the most difficult to visualize. Accordingly, we provide an additional perspective on it in Appendix E.

Key Expansion

For key expansion, the 16 bits of the initial key are grouped into a row of two 8-bit words. shows the expansion into 6 words,
by the calculation of 4 new words from the initial 2 words. The algorithm is as follows:

w2 =wo $g(W1) =wo $ RCON(1) $ SubNib(RotNib(w1))
w3 = w2 $w1
w4 = w2 $g(ws) =w2 $ RCON(2) $ SubNib(RotNib(w3))
W5 = w4 $w3

Figure 5.12. S-AES Key Expansion
(This item is displayed on page 171 in the print version)
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RCON is a round constant, defined as follows: RCJi] = xI * 2, so that RC[1] :x3 =1000 and RC[2] :x4 mod (x4 +x+1)=x+1=0011.
RCIi] forms the leftmost nibble of a byte, with the rightmost nibble being all zeros. Thus, RCON(1) = 10000000 and RCON(2) = 00110000.

For example, suppose the key is 2D55 = 0010 1101 0101 0101 = wow1. Then
w2 = 00101101 $ 10000000 $ SubNib(01010101)

=00101101 $1000OOOO $ 00010001 = 10111100

w3 =10111100 @01010101 =11101001

w4 =10111110 $00110000 @ SubNib(10011110)



=10111100 $00110000 $ 00101111 = 10100011

w5 = 10100011 @11101001 =01001010

The S-Box

The S-box is constructed as follows:

1. Initialize the S-box with the nibble values in ascending sequence row by row. The first row contains the hexadecimal values 0,
1, 2, 3; the second row contains 4, 5, 6, 7; and so on. Thus, the value of the nibble at row i, column j is 4i +j.
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2. Treat each nibble as an element of the finite field GF(24) modulo x4 +x + 1. Each nibble apaja2a3 represents a polynomial of

degree 3.

3. Map each byte in the S-box to its multiplicative inverse in the finite field GF(24) modulo x4 + x + 1; the value 0 is mapped to
itself.

4. Consider that each byte in the S-box consists of 4 bits labeled (bo, b1, b2, b3). Apply the following transformation to each bit of
each byte in the S-box: The AES standard depicts this transformation in matrix form as follows:

L —_— — L = L

]l [ 1 4| 5
b 1 0 1 by
b5 1 1 1 0 b4

b5 |01 1 1]|b

0
1
®

The prime (') indicates that the variable is to be updated by the value on the right. Remember that addition and multiplication
are being calculated modulo 2.
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able 5.54shows the resulting S-box. This is a nonlinear, invertible matrix. The inverse S-box is shown iffable 5.54.

S-AES Structure

We can now examine several aspects of interest concerning the structure of AES. First, note that the encryption and decryption algorithms
begin and end with the add key function. Any other function, at the beginning or end, is easily reversible without knowledge of the key and
so would add no security but just a processing overhead. Thus, there is a round 0 consisting of only the add key function.



The second point to note is that round 2 does not include the mix column function. The explanation for this in fact relates tg a third
observation, which is that although the decryption algorithm is the reverse of the encryption algorithm, as clearly seen in it does
not follow the same sequence of functions. Thus

Encryption: AKy © SR2NS °AK; °MC ° SR ° NS ° &g
Decryption: AKg © INS° ISR °IMC ° A&; °INS ° ISR ° A

From an implementation point of view, it would be desirable to have the decryption function follow the same function sequence as
encryption. This allows the decryption algorithm to be implemented in the same way as the encryption algorithm, creating opportunities for
efficiency.

Note that if we were able to interchange the second and third functions, the fourth and fifth functions, and the sixth and seventh functions
in the decryption sequence, we would have the same structure as the encryption algorithm. Let's see if this is possible. First, consider the
interchange of INS and ISR. Given a state N consisting of the nibbles (N, N1, N2, N3) the transformation INS(ISR(N)) proceeds as follows:

Ny N N N (1SN TSN

—

M N N N IS[N] IS[M]

Where IS refers to the inverse S-Box. Reversing the operations, the transformation ISR(INS(N) proceeds as follows:

N N\ _ (ISIN] IS[IN]Y | (IS[Ao]  IS[A]

=

MoN IS[N] IS[N] IS[N;]  IS[M]

which is the same result. Thus, INS(ISR(N)) = ISR(INS(N)).

Now consider the operation of inverse mix column followed by add key: IMC(AK1(N)) where the round keyK1 consists of the nibbles (k0,0,

k1,0, k0,1, k1,1) Then:

(@ 1)((ku_u kn_1) E}(M, N_,))_(l}' z)(m._g_.@m, ku,l@Nz)
2 9/\\kjy Ky, N NJSOA2 9\ @N ki @N
q{k{m ':'B M J' 'E’ Etﬁll [} ':‘l__‘,} NI} q{kn,l {:‘B N.’:} ':‘I:‘:’ 2{"T‘:I_I ':'E' Vt})
2kop @ N) D UK o@D N) 2kos DMN)DNKL B N)

( (Ykop @ 2ki1p) @ (IN@2N) (Y% @ 2k) @ IND ZN;J)
Eknu D [}k1 ] @ [ENJ @ gNt} Ezkil_l {;T‘:' E"ﬁ“":l.l } {,‘E' [2‘% @ "}N:]

)
(koo @ 2krp) (YKo @ an,ll) ((91 @2N) (NG Ef"u’_:})
'I"kuu @ Y%kip)  (2kyy @ Y%y, (2N, D IN) 2V D IN)
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i
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All of the above steps make use of the properties of finite field arithmetic. The result is that IMC(AK1(N)) = IMC(K1 $ IMC(N). Now let us
define the inverse round key for round 1 to be IMC(K1) and the inverse add key operation 1A to be the bitwise XOR of the inverse round
key with the state vector. Then we have IMC(AK;(N)) = IAK1(IMC(N)). As a result, we can write the following:

Encryption: AKy ° SR2NS °AK; °MC ° SR ° NS ° A&
Decryption: AKg ® INS° ISR °IMC © A1 °INS ° ISR ° X
Decryption: AKg ® ISR ° INS ® AMC(Kz) ® IMC ° ISR ° INS © A,

Both encryption and decryption now follow the same sequence. Note that this derivation would not work as effectively if round 2 of the
encryption algorithm included the MC function. In that case, we would have

Encryption: AK,; ° MC ° SR2NS ° A °MC ° SR ° NS ° &g
Decryption: AKg ® INS °© ISR ° IMC © A7 °INS ° ISR ° IMC ° &>

There is now no way to interchange pairs of operations in the decryption algorithm so as to achieve the same structure as the encryption
algorithm.

K==1
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Chapter 6. More on Symmetric Ciphers
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"l am fairly familiar with all the forms of secret writings, and am myself the author of a trifling monograph upon the
subject, in which | analyze one hundred and sixty separate ciphers," said Holmes.

The Adventure of the Dancing Men Sir Arthur Conan Doyle

Key Points

L4 Multiple encryption is a technique in which an encryption algorithm is used multiple times. In the first
instance, plaintext is converted to ciphertext using the encryption algorithm. This ciphertext is then used as
input and the algorithm is applied again. This process may be repeated through any number of stages.

® Triple DES makes use of three stages of the DES algorithm, using a total of two or three distinct keys.

® A mode of operation is a technique for enhancing the effect of a cryptographic algorithm or adapting the
algorithm for an application, such as applying a block cipher to a sequence of data blocks or a data stream.

® rive modes of operation have been standardized for use with symmetric block ciphers such as DES and
AES: electronic codebook mode, cipher block chaining mode, cipher feedback mode, output feedback
mode, and counter mode.

® A stream cipher is a symmetric encryption algorithm in which ciphertext output is produced bit-by-bit or
byte-by-byte from a stream of plaintext input. The most widely used such cipher is RC4.

This chapter continues our discussion of symmetric ciphers. We begin with the topic of multiple encryption, looking in particular at the
most widely used multiple-encryption scheme: triple DES.

The chapter next turns to the subject of block cipher modes of operation. We find that there are a number of different ways to apply a
block cipher to plaintext, each with its own advantages and particular applications.

Finally, this chapter addresses the subject of symmetric stream ciphers, which differ in significant ways from symmetric block ciphers.
We also look at the most important such cipher, RC4.

=2 wEXT
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6.1. Multiple Encryption and Triple DES

Given the potential vulnerability of DES to a brute-force attack, there has been considerable interest in finding an alternative. One
approach is to design a completely new algorithm, of which AES is a prime example. Another alternative, which would preserve the
existing investment in software and equipment, is to use multiple encryption with DES and multiple keys. We begin by examining the
simplest example of this second alternative. We then look at the widely accepted triple DES (3DES) approach.
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Double DES

The simplest form of multiple encryption has two encryption stages and two keys ). Given a plaintext P and two encryption
keys K1 and Ky, ciphertext C is generated as

C = E(K2, E(K1, P))

Figure 6.1. Multiple Encryption

Decryption
(a) Double encryption

I S S
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Decryption requires that the keys be applied in reverse order:
P = D(K1, D(K2, C))

For DES, this scheme apparently involves a key length of 56 x 2 = 112 bits, of resulting in a dramatic increase in cryptographic strength.
But we need to examine the algorithm more closely.
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Reduction to a Single Stage

Suppose it were true for DES, for all 56-bit key values, that given any two key&j and Kz, it would be possible to find a keyKs such that

Equation 6-1

E(K;, E(K), P)) = E(K;, P)

If this were the case, then double encryption, and indeed any number of stages of multiple encryption with DES, would be useless
because the result would be equivalent to a single encryption with a single 56-bit key.

On the face of it, it does not appear that is likely to hold. Consider that encryption with DES is a mapping of 64-bit blocks to
64-hit blocks. In fact, the mapping can be viewed as a permutation. That is, if we consider all 284 possible input blocks, DES encryption
with a specific key will map each block into a unique 64-bit block. Otherwise, if, say, two given input blocks mapped to the same output

block, then decryption to recover the original plaintext would be impossible. With 264 possible inputs, how many different mappings are
there that generate a permutation of the input blocks? The value is easily seen to be

264 Jiiais -IOMTBEI}UEI[H]U[KJUIZEJU[II][} ~ lnlﬂgu

On the other hand, DES defines one mapping for each different key, for a total number of mappings:



256>1017

Therefore, it is reasonable to assume that if DES is used twice with different keys, it will produce one of the many mappings that are not
defined by a single applicati ES. Although there was much supporting evidence for this assumption, it was not until 1992 that the
assumption was proved [CAMP92].

Meet-in-the-Middle Attack

Thus, the use of double DES results in a mapping that is not equivalent to a single DES encryption. But there is a way to attack this
scheme, one that does not depend on any particular property of DES but that will work against any block encryption cipher.

The algorithm, known as a meet-in-the-middle attack, was first described in DIEE77]. It is based on the observation that, if we have
C = E(K2, E(K1, P))
then (see fiqure 614)

X =E(K1, P) = D(K2, P)

Given a known pair, (P, C), the attack proceeds as follows. First, encryptP for all 26 possible values of K1 Store these results in a table and

then sort the table by the values of X. Next, decrypt C using all P possible values of Ko. As each decryption is produced, check the result

against the table for a match. If a match occurs, thentest  the two resulting keys against a new known plaintext-ciphertext pair. If the
two keys produce the correct ciphertext, accept them as the correct keys.
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For any given plaintext P, there are a possible ciphertext values that could be produced by double DES. Double DES uses, in effect, a
112-bit key, so that there are 2112 possible keys. Therefore, on average, for a given plaintext P, the number of different 112-bit keys that

112564 — 48 Thus, the foregoing procedure will produce about 48 talse alarms on the first (P, C) pair.

will produce a given ciphertext C is 2
A similar argument indicates that with an additional 64 bits of known plaintext and ciphertext, the false alarm rate is reduced to 864 -
216 put another way, if the meet-in-the-middle attack is performed on two blocks of known plaintext-ciphertext, the probability that the
correct keys are determined is 1 2716 The result is that a known plaintext attack will succeed against double DES, which has a key size of

112 bits, with an effort on the order of 256, not much more than the 3° required for single DES.

Triple DES with Two Keys

An obvious counter to the meet-in-the-middle attack is to use three stages of encryption with three different keys. This raises the cost of

the known-plaintext attack to 2112, which is beyond what is practical now and far into the future. However, it has the drawback of requiring
a key length of 56 x 3 = 168 bits, which may be somewhat unwieldy.

As an alternative, Tuchman proposed a trin method that uses only two keys [[TUCH7J]. The function follows an

encrypt-decrypt-encrypt (EDE) sequence (Eigure 6.1H):
C = E(K1, DKz, E(K1, P)))

There is no cryptographic significance to the use of decryption for the second stage. Its only advantage is that it allows users of 3DES to
decrypt data encrypted by users of the older single DES:

C = E(K1, DK1, E(K1, P))) = E(K1, P)

3DES with twys is a relatively popular alternative to DES and has been adopted for use in the key management standards ANS X9.17
and 150 87321



(1 (ANS) American National Standard: Financial Institution Key Management (Wholesale). From its title, X9.17
appears to be a somewhat obscure standard. Yet a number of techniques specified in this standard have been
adopted for use in other standards and applications, as we shall see throughout this book.

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith [COPP94] notes that the cost of a brute-force key search on
P
3DES is on the order of 2112 = (5x 1033) and estimates that the cost of differential cryptanalysis suffers an exponential growth,

compared to single DES, exceeding 102,

It is worth looking at several proposed attacks on 3DES that, although not practical, give a flavor for the types of attacks that have been
considered and that could form the basis for more successful future attacks.
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The first serious proposal came from Merkle and Hellman MERK81]]. Their plan involves finding plaintext values that produce a first
intermediate value of A=0 and then using the meet-in-the-middle attack to determine the two keys. The level of effort is rd
but the technique requires 256 chosen plaintext-ciphertext pairs, a number unlikely to be provided by the holder of the keys.

A known-plaintext attack is outlined in . This method is an improvement over the chosen-plaintext approach but requires more
effort. The attack is based on the observation that if we know A and C (, then the problem reduces to that of an attack on
double DES. Of course, the attacker does not know A, even if P and C are known, as long as the two keys are unknown. However, the
attacker can choose a potential value of A and then try to find a known P, C) pair that produces A. The attack proceeds as follows:

1. Obtain n (P, C) pairs. This is the known plaintext. Place these in a table sorted on the values of P | .

Figure 6.2. Known-Plaintext Attack on Triple DES

B,

(a) Two-key triple encryption with candidate pair of keys

P C




(b) Table of n known {c) Table of intermediate

plaintext-ciphertext values and candidate
pairs, sorted on P keys

2. Pick an arbitrary value a for A, and create a second table with entries defined in the following fashion. For each of

the 2% possible keysKj =i, calculate the plaintext valueP;j that produces a:

Pi=D(, &)
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For each Pjthat matches an entry in[Table 1}, create an entry in consisting of the K1 value and the value ofB that is
produced for the (P, C) pair from , assuming that value ofKj:
B =D(, C)

At the end of this step, sort on the values of B.

3. We now have a number of candidate values of K1 in and are in a position to search for a value oKz. For each of the 26
possible keys Ko = j, calculate the second intermediate value for our chosen value ofa:

Bj=D(, @

At each step, look up Bjin . If there is a match, then the corresponding key from plus this value ofj are candidate
values for the unknown keys (K1, K2). Why? Because we have found a pair of keysi( j) that produce a known (P, C) pair (Eigure
.

4. Test each candidate pair of keys (i, j) on a few other plaintext-ciphertext pairs. If a pair of keys produces the desired ciphertext,
the task is complete. If no pair succeeds, repeat from step 1 with a new value of a.

For a given known (P, C), the probability of selecting the unique value ofa that leads to success is P4, Thus, givenn (P, C) pairs, the

probability of success for a single selected value of ais n/2%%. A basic result from probability theory is that the expected number of draws
required to draw one red ball out of a bin containing n red balls andN n green balls is (N + 1)/(n + 1) if the balls are not replaced. So the
expected number of values of a that must be tried is, for largen,

2(:!4 + 1 N 2'&4

n+1 n

Thus, the expected running time of the attack is on the order of
264
Il

25(‘! _Z ZIED—Ioggu

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES may feel some concern. Thus, many researchers now
feel that three-key 3DES is the preferred alternative (e.g., [KALI964)]). Three-key 3DES has an effective key length of 168 bits and is
defined as follows:

C = E(K3, D2, E(K1, P)))



Backward compatibility with DES is provided by putting K3 = K2 or K1 = Ka.

A number of Internet-based applications have adopted three-key 3DES, including PGP and S/MIME, both discussed .

K==a nExT
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6.2. Block Cipher Modes
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of Operation

A block cipher algorithm is a basic building block for providing data security. To apply a block cipher in a variety of applications, four
"modes of operation” have been defined by NIST (FIPS 81). In essence, a mode of operation is a technique for enhancing the effect of a
cryptographic algorithm or adapting the algorithm for an application, such as applying a block cipher to a sequence of data blocks or a
data stream. The four modes are intended to cover virtually all the possible applications of encryption for which a block cipher could be
used. As new applications and requirements have appeared, NIST has expanded the list of recommended modes to five in Special
Publication 800-38A. These modes are intended for use with any symmetric block cipher, including triple DES and AES. The modes are

summarized in [Table 6.1 and described briefly

Table 6.1. Block Cipher Modes of Operation

in the remainder of this section.

Mode

Description

Typical Application

Electronic Codebook (ECB)

Each block of 64 plaintext bits is encoded
independently using the same key.

Secure transmission of single
values (e.g., an encryption key)

Cipher Block Chaining (CBC)

The input to the encryption algorithm is the
XOR of the next 64 bits of plaintext and the
preceding 64 bits of ciphertext.

General-purpose block-oriented
transmission

Authentication

Cipher Feedback (CFB)

Input is processed j bits at a time. Preceding
ciphertext is used as input to the encryption
algorithm to produce pseudorandom output,
which is XORed with plaintext to produce
next unit of ciphertext.

General-purpose
stream-oriented transmission

Authentication

Output Feedback (OFB)

Similar to CFB, except that the input to the
encryption algorithm is the preceding DES
output.

Stream-oriented transmission
over noisy channel (e.g.,
satellite communication)

Counter (CTR)

Each block of plaintext is XORed with an
encrypted counter. The counter is
incremented for each subsequent block.

General-purpose block-oriented
transmission

Useful for high-speed
requirements

Electronic Codebook Mode
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The simplest mode is the electroni ook (ECB) mode, in which plaintext is handled one block at a time and each block of plaintext is
encrypted using the same key (Ei:ure 6.3& The term codebook is used because, for a given key, there is a unique ciphertext for ever-bit
block of plaintext. Therefore, we can imagine a gigantic codebook in which there is an entry for every possible b-bit plaintext pattern
showing its corresponding ciphertext.
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Figure 6.3. Electronic Codebook (ECB) Mode
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bit blocks, padding the last block if necessary.
, the plaintext (padded as necessary) consists of a

For a message longer than b bits, the procedure is simply to break the message intob
Decryption is performed one block at a time, always using the same key. In
sequence of b-bit blocks, P1, P2,..., PN; the corresponding sequence of ciphertext blocks is C1, C2,..., CN.

The ECB method is ideal for a short amount of data, such as an encryption key. Thus, if you want to transmit a DES key securely, ECB is
the appropriate mode to use.

The most significant characteristic of ECB is that the same b-bit block of plaintext, if it appears more than once in the message, always
produces the same ciphertext.

For lengthy messages, the ECB mode may not be secure. If the message is highly structured, it may be possible for a cryptanalyst to



exploit these regularities. For example, if it is known that the message always starts out with certain predefined fields, then the
cryptanalyst may have a number of known plaintext-ciphertext pairs to work with. If the message has repetitive elements, with a period of
repetition a multiple of b bits, then these elements can be identified by the analyst. This may help in the analysis or may provide an
opportunity for substituting or rearranging blocks.
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Cipher Block Chaining Mode

To overcome the security deficiencies of ECB, we would like a technique in which the same plaintext block, |f repeated, produces
different ciphertext blocks. A simple way to satisfy this requirement is the cipher block chaining (CBC) mode ,. In this scheme,
the input to the encryption algorithm is the XOR of the current plaintext block and the preceding ciphertext block; the same key is used for
each block. In effect, we have chained together the processing of the sequence of plaintext blocks. The input to the encryption function for
each plaintext block bears no fixed relationship to the plaintext block. Therefore, repeating patterns of b bits are not exposed.

Figure 6.4. Cipher Block Chaining (CBC) Mode
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For decryption, each cipher block is passed through the decryption algorithm. The result is XORed with the preceding ciphertext block to
produce the plaintext block. To see that this works, we can write

Cj=E(K, [Cj-1 $Pj])

Then

D(K, Cj) = D(K, E(K, [Cj-1 $Pj]))

DK, Cj) = Cj-1 $Pj
Cj-1 $D(K, Cjp=Cj1 $ Cj-1 $ Pj = Pj
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To produce the first block of ciphertext, an initialization vector (IV) is XORed with the first block of plaintext. On decryption, the IV is
XORed with the output of the decryption algorithm to recover the first block of plaintext. The IV is a data block that is that same size as the
cipher block.

The IV must be known to both the sender and receiver but be unpredictable by a third party. For maximum security, the 1V should be
protected against unauthorized changes. This could be done by sending the IV using ECB encryption. One reason for protecting the IV is
as follows: If an opponent is able to fool the receiver into using a different value for 1V, then the opponent is able to invert selected bits in
the first block of plaintext. To see this, consider the following:

C1=E(K, [IV $P1])
P1=1V $D(K, C1)

Now use the notation that X[i] denotes theith bit of the b-bit quantity X. Then

P1i] = IV[i] @D(K. C1)Ii]

Then, using the properties of XOR, we can state

P1[i]' = IV[i] $D(K, Ca)Ii]

where the prime notation denotes bit complementation. This means that if an opponent can predictably change bits in 1V, the
corresponding bits of the received value of P1 can be changed.

For other possible attacks based on knowledge of IV, see [VOYD83].
In conclusion, because of the chaining mechanism of CBC, it is an appropriate mode for encrypting messages of length greater thanb bits.

In addition to its use to achieve confidentiality, the CBC mode can be used for authentication. This use is described in.

Cipher Feedback Mode

The DES scheme is essentially a block cipher technique that uses b-bit blocks. However, it is possible to convert DES into a stream cipher,
using either the cipher feedback (CFB) or the output feedback mode. A stream cipher eliminates the need to pad a message to be an
integral number of blocks. It also can operate in real time. Thus, if a character stream is being transmitted, each character can be
encrypted and transmitted immediately using a character-oriented stream cipher.



One desirable property of a stream cipher is that the ciphertext be of the same length as the plaintext. Thus, if 8-bit characters are being
transmitted, each character should be encrypted to produce a cipher text output of 8 bits. If more than 8 bits are produced, transmission

capacity is wasted.

depicts the CFB scheme. In the figure, it is assumed that the unit of transmission is bits; a common value iss = 8. As with CBC,
the units of plaintext are chained together, so that the ciphertext of any plaintext unit is a function of all the preceding plaintext. In this case,
rather than units of b bits, the plaintext is divided into segments of s bits.
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Figure 6.5. s-bit Cipher Feedback (CFB) Mode
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First, consider encryption. The input to the encryption function is ab-bit shift register that is initially set to some initialization vector (V).



The leftmost (most significant) s bits of the output of the encryption function are XORed with the first segment of plaintexP1 to produce the
first unit of ciphertext C1, which is then transmitted. In addition, the contents of the shift register are shifted left bg bits andC1 is placed in
the rightmost (least significant) s bits of the shift register. This process continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext unit is XORed with the output of the encryption function to
produce the plaintext unit. Note that it is the ‘ function that is used, not the decryption function. This is easily explained. LeSs(X)

be defined as the most significant s bits of X. Then

Cl =P1 @Ss[E(K, |V)]

Therefore,

P1=C1 @SS[E(K, V)]

The same reasoning holds for subsequent steps in the process.

Output Feedback Mode

The output feedback (OFB) mode is similar in structure to that of CFB, as illustrated in . As can be seen, it is the output of the
encryption function that is fed back to the shift register in OFB, whereas in CFB the ciphertext unit is fed back to the shift register.

Figure 6.6. s-bit Output Feedback (OFB) Mode
(This item is displayed on page 187 in the print version)
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One advantage of the OFB method is that bit errors in transmission do not propagate. For example, if a bit error occurs @1 only the
recovered value of is P1 affected; subsequent plaintext units are not corrupted. With CFB,C1 also serves as input to the shift register and
therefore causes additional corruption downstream.

The disadvantage of OFB is that it is more vulnerable to a message stream modification attack than is CFB. Consider that complementing
a bit in the ciphertext complements the corresponding bit in the recovered plaintext. Thus, controlled changes to the recovered plaintext
can be made. This may make it possible for an opponent, by making the necessary changes to the checksum portion of the message as
well data portion, to alter the ciphertext in such a way that it is not detected by an error-correcting code. For a further discussion,
see [VOYD8Y].

Counter Mode

Although interest in the counter mode (CTR) has increased recently, with applications to ATM (asynchronous transfer mode) network
security and IPSec (IP security), this mode was proposed early on (e.g., [DIEE79]).

depicts the CTR mode. A counter, equal to the plaintext block size is used. The only requirement stated in SP 800-38A is that
the counter value must be different for each plaintext block that is encrypted. Typically, the counter is initialized to some value and then

incremented by 1 for each subsequent block (modulo 2b where b is the block size). For encryption, the counter is encrypted and then
XORed with the  plaintext block to produce the ciphertext block; there is no chaining. For decryption, the same sequence of counter
values is used, with each encrypted counter XORed with a ciphertext block to recover the corresponding plaintext block.
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Figure 6.7. Counter (CTR) Mode
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[LIPMO(] lists the following advantages of CTR mode:

® Hardware efficiency: Unlike the three chaining modes, encryption (or decryption) in CTR mode can be done in parallel on
multiple blocks of plaintext or ciphertext. For the chaining modes, the algorithm must complete the computation on one block
before beginning on the next block. This limits the maximum throughput of the algorithm to the reciprocal of the time for one
execution of block encryption or decryption. In CTR mode, the throughput is only limited by the amount of parallelism that is

achieved.

® Software efficiency: Similarly, because of the opportunities for parallel execution in CTR mode, processors that support
parallel features, such as aggressive pipelining, multiple instruction dispatch per clock cycle, a large number of registers, and

SIMD instructions, can be effectively utilized.

® Preprocessing: The execution of the underlying encryption algorithm does not depend on input of the plaintext or ciphertext.

Therefore, if sufficient memory is available and secur]

ty is mai

tained, preprocessing can be used to prepare the output of the

encryption boxes that feed into the XOR functions in

Figure 6.7

. When the plaintext or ciphertext input is presented, then the

only computation is a series of XORs. Such a strategy greatly enhances throughput.
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® Random access: The ith block of plaintext or ciphertext can be processed in random-access fashion. With the chaining
modes, block Cj cannot be computed until thei - 1 prior block are computed. There may be applications in which a ciphertext is
stored and it is desired to decrypt just one block; for such applications, the random access feature is attractive.

® provable security: It can be shown that CTR is at least as secure as the other modes discussed in this section.

® Simplicity: Unlike ECB and CBC modes, CTR mode requires only the implementation of the encryption algorithm and not the
decryption algorithm. This matters most when the decryption algorithm differs substantially from the encryption algorithm, as it
does for AES. In addition, the decryption key scheduling need not be implemented.

k=1 EXT
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6.3. Stream Ciphers and RC4

In this section we look at perhaps the most popular symmetric stream cipher, RC4. We begin with an overview of stream cipher structure,
and then examine RC4.

Stream Cipher Structure

A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher may be designed to operate on one bit at a time or
on units larger than a byte at a time.is a representative diagram of stream cipher structure. In this structure a key is input to a
pseudorandom_bi rator that produces a stream of 8-bit numbers that are apparently random. We discuss pseudorandom number
generators in Ehagter 1. For now, we simply say that a pseudorandom stream is one that is unpredictable without knowledge of the input
key. The output of the generator, called a keystream, is combined one byte at a time with the plaintext stream using the bitwise
exclusive-OR (XOR) operation. For example, if the next byte generated by the generator is 01101100 and the next plaintext byte is
11001100, then the resulting ciphertext byte is

[Page 190]
11001100 plaintext
& 01101100 key stream
10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:
10100000 ciphertext

@ 01101100 key streamn
100 S (B A 4 plaintext

Figure 6.8. Stream Cipher Diagram
(This item is displayed on page 189 in the print version)
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The stream cipher is similar to the one-time pad discussed in . The difference is that a one-time pad uses a genuine random
number stream, whereas a stream cipher uses a pseudorandom number stream.

IKUMAQ1] lists the following important design considerations for a stream cipher:

1. The encryption sequence should have a large period. A pseudorandom number generator uses a function that produces a
deterministic stream of bits that eventually repeats. The longer the period of repeat the more difficult it will be to do
cryptanalysis. This is essentially the same consideration that was discussed with reference to the Vigenére cipher, namely that
the longer the keyword the more difficult the cryptanalysis.

2. The keystream should approximate the properties of a true random number stream as close as possible. For example, there
should be an approximately equal number of 1s and 0s. If the keystream is treated as a stream of bytes, then all of the 256
possible byte values should appear approximately equally often. The more random-appearing the keystream is, the more
randomized the ciphertext is, making cryptanalysis more difficult.

3. Note from that the output of the pseudorandom number generator is conditioned on the value of the input key. To
guard against brute-force attacks, the key needs to be sufficiently long. The same considerations as apply for block ciphers are
valid here. Thus, with current technology, a key length of at least 128 bits is desirable.

With a properly designed pseudorandom number generator, a stream cipher can be as secure as block cipher of comparable key length.
The primary advantage of a stream cipher is that stream ciphers are almost always faster and use far less code than do block ciphers. The
example in this section, RC4, can be implemented in just a few lines of code. [Table 6.4, using data from , compares execution
times of RC4 with three well-known symmetric block ciphers. The advantage of a  block cipher is that you can reuse keys. However, if
two plaintexts are encrypted with the same key using a stream cipher, then cryptanalysis is often quite simple ]. If the two
ciphertext streams are XORed together, the result is the XOR of the original plaintexts. If the plaintexts are text strings, credit card
numbers, or other byte streams with known properties, then cryptanalysis may be successful.
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Table 6.2. Speed Comparisons of Symmetric Ciphers on a Pentium |l

Cipher Key Length Speed (Mbps)
DES 56 9
3DES 168 3
RC2 variable 0.9
RC4 variable 45

For applications that require encryption/decryption of a stream of data, such as over a data communications channel or a browser/Web
link, a stream cipher might be the better alternative. For applications that deal with blocks of data, such as file transfer, e-mail, and
database, block ciphers may be more appropriate. However, either type of cipher can be used in virtually any application.

The RC4 Algorithm

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key-size stream cipher with byte-oriented
operations. The algorithm is based on the use of a random permutation. Analysis shows that the period of the cipher is overwhelmingly

likely to be greater than 10100 . Eight to sixteen machine operations are required per output byte, and the cipher can be
expected to run very quickly in software. RC4 is used in the SSL/TLS (Secure Sockets Layer/Transport Layer Security) standards that
have been defined for communication between Web browsers and servers. It is also used in the WEP (Wired Equivalent Privacy) protocol
and the newer WiFi Protected Access (WPA) protocol that are part of the IEEE 802.11 wireless LAN standard. RC4 was kept as a trade
secret by RSA Security. In September 1994, the RC4 algorithm was anonymously posted on the Internet on the Cypherpunks anonymous
remailers list.

The RC4 algorithm is remarkably simply and quite easy to explain. A variable-length key of from 1 to 256 bytes (8 to 2048 bits) is used to
initialize a 256-byte state vector S, with elements S[0], S[1 ]. At all times, S contains a permutation of all 8-bit numbers from 0
through 255. For encryption and decryption, a byte k (see is generated from S by selecting one of the 255 entries in a
systematic fashion. As each value of k is generated, the entries in S are once again permuted.

Initialization of S

To begin, the entries of S are set equal to the values from 0 through 255 in ascending order; that is; S[0] = 0, S[1] = 1,..., S[255] = 255. A
temporary vector, T, is also created. If the length of the key K is 256 bytes, then K is transferred to T. Otherwise, for a key of length keylen
bytes, the first keylen elements of T are copied from K and then K is repeated as many times as necessary to fill out T. These preliminary
operations can be summarized as follows:
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/*Initialization */
for i=0to 255 do
Sl =1i;

T[i] = K[i mod keylen];



Next we use T to produce the initial permutation of S. This involves starting with S[0] and going through to S[255], and, for each SJi],
swapping S[i] with another byte in S according to a scheme dictated by T[i]:

/*Initial Permutation of S*/
j=0;
for i=0to 255 do
j=(+ S[i] + T[i)) mod 256;
Swap (SIi], S[i]);

Because the only operation on S is a swap, the only effect is a permutation. S still contains all the numbers from 0 through 255.

Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream generation involves cycling through all the elements of S[i], and, for
each SJi], swapping S[i] with another byte in S according to a scheme dictated by the current configuration of S. After S[255] is reached,
the process continues, starting over again at S[0]:

/* Stream Generation */

i,j=0;

while (true)
i=(i+1)mod 256;
j=(+ SJ[i)) mod 256;
Swap (SIi, SIi);
t = (SJi] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the valuek with the next byte of ciphertext.

illustrates the RC4 logic.

Figure 6.9. RC4
(This item is displayed on page 193 in the print version)
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Strength of RC4

A number of papers have been published analyzing methods of attacking RC4 [e.g.,kNUng , i\_/IISng , ELUHOd , MANTOJ). None of

these approaches is practical against RC4 with a reasonable key length, such as 128 bits. A more serious problem is reported in
FLUHOZ]. The authors demonstrate that the WEP protocol, intended to provide confidentiality on 802.11 wireless LAN networks, is
vulnerable to a particular attack approach. In essence, the problem is not with RC4 itself but the way in which keys are generated for use
as input to RC4. This particular problem does not appear to be relevant to other applications using RC4 and can be remedied in WEP by
changing the way in which keys are generated. This problem points out the difficulty in designing a secure system that involves both
cryptographic functions and protocols that make use of them.
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[Page 194 (continued)]

6.4. Recommended Reading and Web Site

[ECHNO9{] provides details on numerous symmetric block ciphers as well as some stream ciphers|[ROBS95H] is an interesting and

worthwhile examination of many design issues related to symmetric block ciphers.

is éUEPQJ

(]

n@_us_a.uja[;cellent and lengthy discussion of stream cipher design principles. Another good treatment, quite mathematical,
ROBS954] is an interesting and worthwhile examination of many design issues related to stream ciphers.

UMA97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.

mmﬂmjrs. RSA Laboratories Technical Report TR-701, July 1995.
http://www.rsasecurity.com/rsalab
mﬁ RSA Laboratories Technical Report TR-601, August 1995.
http://www.rsasecurity.com/rsalab

Rueppel, T. "Stream Ciphers." In .

SCHN9{ Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SIMM92 Simmons, G., ed. Contemporary Cryptology: The Science of Information Integrity. Piscataway, NJ:
IEEE Press, 1992.

Recommended Web Site

® Biock cipher modes of operation: NIST page with full information on NIST-approved modes of operation
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6.5. Key Terms, Review Questions, and Problems

Key Terms

|3lock cipher modes of operatioA

l:ipher block chaining mode (CBC{

Ligher feedback mode (CFBI

lneet-in-the-middle attacll

Eounter mode (CTR{

Islectronic codebook mode (ECB{

l)utput feedback mode (OFBJ
riple DES (3DES
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Review Questions

6.1  What is triple encryption?

6.2  What is a meet-in-the-middle attack?

6.3 How many keys are used in triple encryption?

6.4  Why is the middle portion of 3DES a decryption rather than an encryption?
6.5  List important design considerations for a stream cipher.

6.6  Why is it not desirable to reuse a stream cipher key?

6.7  What primitive operations are used in RC4?

6.8  Why do some block cipher modes of operation only use encryption while others use both encryption and decryption?



Problems

6.1  You want to build a hardware device to do block encryption in the cipher block chaining (CBC) mode using an algorithm
stronger than DES. 3DES is a good candidate. shows two possibilities, both of which follow from the definition

of CBC. Which of the two would you choose:

a. For security?

b. For performance?

Figure 6.10. Use of Triple DES in CBC Mode
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6.2

6.3

6.4
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6.8

(b) Three-loop CBC
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Can you suggest a security improvement to either option in , using only three DES chips and some number of
XOR functions? Assume you are still limited to two keys.

The Merkle-Hellman attack on 3DES begins by assuming a value A = 0 of ( . Then, for each of the 26 possible
values of K1, the plaintext P that produces A = 0 is determined. Describe the rest of the algorithm.

With the ECB mode of DES, if there is an error in a block of the transmitted ciphertext, only the corresponding plai
block is affected. However, in the CBC mode, this error propagates. For example, an error in the transmitted C1 (Eigure 6.
obviously corrupts P1 and P2.

a. Are any blocks beyond P2 affected?

b. Suppose that there is a bit error in the source version of P1. Through how many ciphertext blocks is this error
propagated? What is the effect at the receiver?

If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode, how far does the error propagate?

Fill in the remainder of this table:

Mode Encrypt Decrypt
ECB  GCj=EKP)j=1,.N Pi=D(K, C)j=1,.,N
CBC ¢ =EK s $IV]) P1 = DK, cl)$ Y%

Ci= E(K, [Pj®cj.1])j =2,.,N Pj= DK, C) @ Ci1j=2,...,N
CFB
OFB
CTR

CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it could be used in any block cipher.
CBC-Pad handles plaintext of any length. The ciphertext is longer then the plaintext by at most the size of a single block.
Padding is used to assure that the plaintext input is a multiple of the block length. It is assumed that the original plaintext is
an integer number of bytes. This plaintext is padded at the end by from 1 to bb bytes, where bb equals the block size in
bytes. The pad bytes are all the same and set to a byte that represents the number of bytes of padding. For example, if
there are 8 bytes of padding, each byte has the bit pattern 00001000. Why not allow zero bytes of padding? That is, if the
original plaintext is an integer multiple of the block size, why not refrain from padding?

Padding may not always be appropriate. For example, one might wish to store the encrypted data in the same memory
buffer that originally contained the plaintext. In that case, the ciphertext must be the same length as the original plaintext. A
mode for that purpose is the ciphertext stealing (CTS) mode. figure 6.114 shows an implementation of this mode.

a. Explain how it works.

b. Describe how to decryptCn-1 and Cn



6.9 shows an alternative to CTS for producing ciphertext of equal length to the plaintext when the plaintext is not
an integer multiple of the block size.

a. Explain the algorithm.

b. Explain why CTS is preferable to this approach illustrated i .

Figure 6.11. Block Cipher Modes for Plaintext not a Multiple of Block Size
(This item is displayed on page 197 in the print version)
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6.10 What RC4 key value will leave S unchanged during initialization? That is, after the initial permutation of S, the entries of S
will be equal to the values from 0 through 255 in ascending order.
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6.11

RC4 has a secret internal state which is a permutation of all the possible values of the vecto8 and the two indicesi and j.

a. Using a straightforward scheme to store the internal state, how many bits are used?

b. Suppose we think of it from the point of view of how much information is represented by the state. In that case, we
need to determine how may different states there are, than take the log to the base 2 to find out how many bits of
information this represents. Using this approach, how many bits would be needed to represent the state?



6.12  Alice and Bob agree to communicate privately via email using a scheme based on RC4, but want to avoid using a new
secret key for each transmission. Alice and Bob privately agree on a 128-bit key k. To encrypt a messagem, consisting of a
string of bits, the following procedure is used:

1. Choose a random 80-hit valuev

2. Generate the ciphertextc = RC4(v || k)$ m
3. Send the bit string (/|| C)

a. Suppose Alice uses this procedure to send a message m to Bob. Describe how Bob can recover the messagem

from (v || C) using k.

b. If an adversary observes several values (v1 || C1), (v2 || C2), ... transmitted between Alice and Bob, how can

he/she determine when the same key stream has been used to encrypt two messages?
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c. Approximately how many messages can Alice expect to send be, ey stream will be used twice? Use
the result from the birthday paradox described in [IE uation (11.7).

d. What does this imply about the lifetime of the keyk (i.e., the number of messages that can be encrypted using)?

Programming Problems

6.13

6.14

6.15

6.16

Create software that can encrypt and decrypt in Cipher Block Chaining mode using one of the following ciphers: affine
modulo 256, Hill modulo 256, S-DES, DES. Test data for S-DES: using a binary initialization vector of 1010 1010, a
binary plaintext of 0000 0001 0010 0011 encrypted with a binary key of 01111 11101 should give a binary plaintext of
1111 0100 0000 1011. Decryption should work correspondingly.

Create software that can encrypt and decrypt in 4-bit Cipher Feedback mode using one of the following ciphers:
additive modulo 256, affine modulo 256, S-DES;

or

8-bit Cipher Feedback mode using one of the following ciphers: 2 x 2 Hill modulo 256. Test data for S-DES: using a
binary initialization vector of 1010 1011, a binary plaintext of 0001 0010 0011 0100 encrypted with a binary key of
01111 11101 should give a binary plaintext of 1110 1100 1111 1010. Decryption should work correspondingly.

Create software that can encrypt and decrypt in 4-bit Output Feedback mode using one of the following ciphers:
additive modulo 256, affine modulo 256, S-DES;

or

8-bit Output Feedback mode using one of the following ciphers: 2 x 2 Hill modulo 256,

Create software that can encrypt and decrypt in Counter mode using one of the following ciphers: affine modulo 256,
Hill modulo 256, S-DES.

Test data for S-DES: using a counter starting at 0000 0000, a binary plaintext of 0000 0001 0000 0010 0000 0100
encrypted with a binary key of 01111 11101 should give a binary plaintext of 0011 1000 0100 1111 0011 0010.
Decryption should work correspondingly.



6.17  Implement a differential cryptanalysis attack on 3-round S-DES.

=2
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Amongst the tribes of Central Australia every man, woman, and child has a secret or sacred name which is
bestowed by the older men upon him or her soon after birth, and which is known to none but the fully initiated
members of the group. This secret name is never mentioned except upon the most solemn occasions; to utter it in
the hearing of men of another group would be a most serious breach of tribal custom. When mentioned at all, the
name is spoken only in a whisper, and not until the most elaborate precautions have been taken that it shall be
heard by no one but members of the group. The native thinks that a stranger knowing his secret name would have
special power to work him ill by means of magic.

The Golden Bough, Sir James George Frazer

John wrote the letters of the alphabet under the letters in its first lines and tried it against the message.
Immediately he knew that once more he had broken the code. It was extraordinary the feeling of triumph he had.
He felt on top of the world. For not only had he done it, had he broken the July code, but he now had the key to
every future coded message, since instructions as to the source of the next one must of necessity appear in the
current one at the end of each month.

Talking to Strange Men, Ruth Rendell

Key Points

In a distributed environment, encryption devices can be placed to support either link encryption or
end-to-end encryption. With link encryption, each vulnerable communications link is equipped on both ends
with an encryption device. With end-to-end encryption, the encryption process is carried out at the two end
systems.

Even if all traffic between users is encrypted, a traffic analysis may yield information of value to an
opponent. An effective countermeasure is traffic padding which involves sending random bits during
periods when no encrypted data are available for transmission.

Key distribution is the function that delivers a key to two parties who wish to exchange secure encrypted
data. Some sort of mechanism or protocol is needed to provide for the secure distribution of keys.




® Key distribution often involves the use of master keys, which are infrequently used and are long lasting, and
session keys, which are generated and distributed for temporary use between two parties.

A capability with application to a number of cryptographic functions is random or pseudorandom number
generation. The principle requirement for this capability is that the generated number stream be
unpredictable.
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Historically, the focus of cryptology has been on the use of symmetric encryption to provide confidentiality. It is only in the last
several decades that other considerations, such as authentication, integrity, digital signatures, and the use of public-key encryption, have
been included in the theory and practice of cryptology.

Before examining some of these more recent topics, we concentrate in this chapter on the use of symmetric encryption to provide
confidentiality. This topic remains important in itself. In addition, an understanding of the issues involved here helps to motivate the
development of public-key encryption and clarifies the issues involved in other applications of encryption, such as authentication.

We begin with a discussion of the location of encryption logic; the main choice here is between what are known as link encryption and
end-to-end encryption. Next, we look at the use of encryption to counter traffic analysis attacks. Then we discuss the difficult problem of
key distribution. Finally, we discuss the principles underlying an important tool in providing a confidentiality facility: random number
generation.

e prey | NEXT B
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7.1. Placement of Encryption Function

If encryption is to be used to counter attacks on confidentiality, we need to decide what to encrypt and where the encryption function
should be located. To begin, this section examines the potential locations of security attacks and then looks at the two major approaches
to encryption placement: link and end to end.

Potential Locations for Confidentiality Attacks

As an example, consider a user workstation in a typical business organization. suggests the types of communications facilities
that might be employed by such a workstation and therefore gives an indication of the points of vulnerability.

Figure 7.1. Points of Vulnerability

Workstation
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In most organizations, workstations are attached to local area networks (LANS). Typically, the user can reach other workstations, hosts,
and servers directly on the LAN or on other LANs in the same building that are interconnected with bridges and routers. Here, then, is the
first point of vulnerability. In this case, the main concern is eavesdropping by another employee. Typically, a LAN is a broadcast network:
Transmission from any station to any other station is visible on the LAN medium to all stations. Data are transmitted in the form of frames,
with each frame containing the source and destination address. An eavesdropper can monitor the traffic on the LAN and capture any traffic
desired on the basis of source and destination addresses. If part or all of the LAN is wireless, then the potential for eavesdropping is
greater.

Furthermore, the eavesdropper need not necessarily be an employee in the building. If the LAN, through a communications server or one
of the hosts on the LAN, offers a dial-in capability, then it is possible for an intruder to gain access to the LAN and monitor traffic.

Access to the outside world from the LAN is almost always available in the form of a router that connects to the Internet, a bank of dial-out
modems, or some other type of communications server. From the communications server, there is a line leading to a wiring closet. The
wiring closet serves as a patch panel for interconnecting internal data and phone lines and for providing a staging point for external
communications.

The wiring closet itself is vulnerable. If an intruder can penetrate to the closet, he or she can tap into each wire to determine which are
used for data transmission. After isolating one or more lines, the intruder can attach a low-power radio transmitter. The resulting signals
can be picked up from a nearby location (e.g., a parked van or a nearby building).

Several routes out of the wiring closet are possible. A standard configuration provides access to the nearest central office of the local
telephone company. Wires in the closet are gathered into a cable, which is usually consolidated with other cables in the basement of the
building. From there, a larger cable runs underground to the central office.

In addition, the wiring closet may provide a link to a microwave antenna, either an earth station for a satellite link or a point-to-point
terrestrial microwave link. The antenna link can be part of a private network, or it can be a local bypass to hook in to a long-distance
carrier.

The wiring closet may also provide a link to a node of a packet-switching network. This link can be a leased line, a direct private line, or a
switched connection through a public telecommunications network. Inside the network, data pass through a number of nodes and links
between nodes until the data arrive at the node to which the destination end system is connected.

An attack can take place on any of the communications links. For active attacks, the attacker needs to gain physical control of a portion of
the link and be able to insert and capture transmissions. For a passive attack, the attacker merely needs to be able to observe
transmissions. The communications links involved can be cable (telephone twisted pair, coaxial cable, or optical fiber), microwave links, or
satellite channels. Twisted pair and coaxial cable can be attacked using either invasive taps or inductive devices that monitor
electromagnetic emanations. Invasive taps allow both active and passive attacks, whereas inductive taps are useful for passive attacks.
Neither type of tap is as effective with optical fiber, which is one of the advantages of this medium.  The fiber does not generate
electromagnetic emanations and hence is not vulnerable to inductive taps. Physically breaking the cable seriously degrades signal quality
and is therefore detectable. Microwave and satellite transmissions can be intercepted with little risk to the attacker. This is especially true
of satellite transmissions, which cover a broad geographic area. Active attacks on microwave and satellite are also possible, although they
are more difficult technically and can be quite expensive.
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In addition to the potential vulnerability of the various communications links, the various processors along the path are themselves subject
to attack. An attack can take the form of attempts to modify the hardware or software, to gain access to the memory of the processor, or to
monitor the electromagnetic emanations. These attacks are less likely than those involving communications links but are nevertheless a
source of risk.

Thus, there are a large number of locations at which an attack can occur. Furthermore, for wide area communications, many of these
locations are not under the physical control of the end user. Even in the case of local area networks, in which physical security measures
are possible, there is always the threat of the disgruntled employee.



Link versus End-to-End Encryption

The most powerful and most common approach to securing the points of vulnerability highlighted in the preceding section is encryption. If
encryption is to be used to counter these attacks, then we need to decide what to encrypt and where the encryption gear should be
located. As indicates, there are two fundamental alternatives: link encryption and end-to-end encryption.

Figure 7.2. Encryption Across a Packet-Switching Network
(This item is displayed on page 204 in the print version)
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Basic Approaches

With link encryption, each vulnerable communications link is equipped on both ends with an encryption device. Thus, all traffic over all
communications links is secured. Although this recourse requires a lot of encryption devices in a large network, its value is clear. One of its
disadvantages is that the message must be decrypted each time it enters a switch (such as a frame relay switch) because the switch must
read the address (logical connection number) in the packet header in order to route the frame. Thus, the message is vulnerable at each
switch. If working with a public network, the user has no control over the security of the nodes.

Several implications of link encryption should be noted. For this strategy to be effective, all the potential links in a path from source to
destination must use link encryption. Each pair of nodes that share a link should share a unique key, with a different key used on each link.
Thus, many keys must be provided.

With end-to-end encryption, the encryption process is carried out at the two end systems. The source host or terminal encrypts the data.



The data in encrypted form are then transmitted unaltered across the network to the destination terminal or host. The destination shares a
key with the source and so is able to decrypt the data. This plan seems to secure the transmission against attacks on the network links or
switches. Thus, end-to-end encryption relieves the end user of concerns about the degree of security of networks and links that support
the communication. There is, however, still a weak spot.

Consider the following situation. A host connects to a frame relay or ATM network, sets up a logical connection to another host, and is
prepared to transfer data to that other host by using end-to-end encryption. Data are transmitted over such a network in the form of
packets that consist of a header and some user data. What part of each packet will the host encrypt? Suppose that the host encrypts the
entire packet, including the header. This will not work because, remember, only the other host can perform the decryption. The frame
relay or ATM switch will receive an encrypted packet and be unable to read the header. Therefore, it will not be able to route the packet. It
follows that the host may encrypt only the user data portion of the packet and must leave the header in the clear.
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Thus, with end-to-end encryption, the user data are secure. However, the traffic pattern is not, because packet headers are transmitted in
the clear. On the other hand, end-to-end encryption does provide a degree of authentication. If two end systems share an encryption key,
then a recipient is assured that any message that it receives comes from the alleged sender, because only that sender shares the relevant
key. Such authentication is not inherent in a link encryption scheme.

To achieve greater security, both link and end-to-end encryption are needed, as is shown in . When both forms of encryption are
employed, the host encrypts the user data portion of a packet using an end-to-end encryption key. The entire packet is then encrypted
using a link encryption key. As the packet traverses the network, each switch decrypts the packet, using a link encryption key to read the
header, and then encrypts the entire packet again for sending it out on the next link. Now the entire packet is secure except for the time
that the packet is actually in the memory of a packet switch, at which time the packet header is in the clear.

summarizes the key characteristics of the two encryption strategies.

Table 7.1. Characteristics of Link and End-to-End Encryption [PELEO

Link Encryption End-to-End Encryption

Security within End Systems and Intermediate Systems
Message exposed in sending host Message encrypted in sending host
Message exposed in intermediate nodes Message encrypted in intermediate nodes

Role of User

Applied by sending host Applied by sending process

Transparent to user User applies encryption

Host maintains encryption facility User must determine algorithm

One facility for all users Users selects encryption scheme

Can be done in hardware Software implementation

All or no messages encrypted User chooses to encrypt, or not, for each message

Implementation Concerns

Requires one key per (host-intermediate node) pair and Requires one key per user pair
(intermediate node-intermediate node) pair

Provides host authentication Provides user authentication




Logical Placement of End-to-End Encryption Function

With link encryption, the encryption function is performed at a low level of the communications hierarchy. In terms of the Open Systems
Interconnection (OSI) model, link encryption occurs at either the physical or link layers.

[Page 206]

For end-to-end encryption, several choices are possible for the logical placement of the encryption function. At the lowest practical level,
the encryption function could be performed at the network layer. Thus, for example, encryption could be associated with the frame relay or
ATM protocol, so that the user data portion of all frames or ATM cells is encrypted.

With network-layer encryption, the number of identifiable and separately protected entities corresponds to the number of end systems in
the network. Each end system can engage in an encrypted exchange with another end system if the two share a secret key. All the user
processes and applications within each end system would employ the same encryption scheme with the same key to reach a particular
target end system. With this arrangement, it might be desirable to off-load the encryption function to some sort of front-end processor
(typically a communications board in the end system).

shows the encryption function of the front-end processor (FEP). On the host side, FEP accepts packets. The user data

portion of the packet is encrypted, while the packet header bypasses the encryption process. L The resulting packet is delivered to the
network. In the opposite direction, for packets arriving from the network, the user data portion is decrypted and the entire packet is
delivered to the host. If the transport layer functionality (e.g., TCP) is implemented in the front end, then the transport-layer header would
also be left in the clear and the user data portion of the transport protocol data unit is encrypted.

[ The terms red and black are frequently used. Red data are sensitive or classified data in the clear. Black data are
encrypted data.

Figure 7.3. Front-End Processor Function
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Deployment of encryption services on end-to-end protocols, such as a network-layer frame relay or TCP, provides end-to-end security for
traffic within a fully integrated internetwork. However, such a scheme cannot deliver the necessary service for traffic that crosses
internetwork boundaries, such as electronic mail, electronic data interchange (EDI), and file transfers.

illustrates the issues involved. In this example, an electronic I gateway is used to interconnect an internetwork that uses an

OSl-based architecture with one that uses a TCP/IP-based architectur.2 In such a configuration, there is no end-to-end protocol below
the application layer. The transport and network connections from each end system terminate at the mail gateway, which sets up new
transport and network connections to link to the other end system. Furthermore, such a scenario is not limited to the case of a gateway
between two different architectures. Even if both end systems use TCP/IP or OSlI, there are plenty of instances in actual configurations in
which mail gateways sit between otherwise isolated internetworks. Thus, for applications like electronic mail that have a store-and-forward
capability, the only place to achieve end-to-end encryption is at the application layer.

2l Appendix H provides a brief overview of the OSI and TCP/IP protocol architectures.
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Figure 7.4. Encryption Coverage Implications of Store-and-Forward Communications
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A drawback of application-layer encryption is that the number of entities to consider increases dramatically. A network that supports
hundreds of hosts may support thousands of users and processes. Thus, many more secret keys need to be generated and distributed.

An interesting way of viewi
but it is more secure. Eigure 7.5

gateway refers to a store-and-forward device that operates at the application level. 3

e alternatives is to note that as we move up the communications hierarchy, less information is encrypted

| highlights this point, using the TCP/IP architecture an example. In the figure, an application-level

3] Unfortunately, most TCP/IP documents use the termgateway to refer to what is more commonly referred to as a

router.
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Figure 7.5. Relationship between Encryption and Protocol Levels
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With application-level encryption ), only the user data portion of a TCP segment is encrypted. The TCP, |P, network-level, and
link-level headers and link-level trailer are in the clear. By contrast, if encryption is performed at the TCP level ), then, on a
single end-to-end connection, the user data and the TCP header are encrypted. The IP header remains in the clear because it is needed
by routers to route the IP datagram from source to destination. Note, however, that if a message passes through a gateway, the TCP
connection is terminated and a new transport connection is opened for the next hop. Furthermore, the gateway is treated as a destination
by the underlying IP. Thus, the encrypted portions of the data unit are decrypted at the gateway. If the next hop is over a TCP/IP network,
then the user data and TCP header are encrypted a fi Efff transmission. However, in the gateway itself the data unit is buffered
entirely in the clear. Finally, for link-level encryption aFi ure 7.5q), the entireta unit except for the link header and trailer is encrypted on

each link, but the entire data unit is in the clear at each router and gateway. 4

4 The figure actually shows but one alternative. It is also possible to encrypt part or even all of the link header and
trailer except for the starting and ending frame flags.
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7.2. Traffic Confidentiality

We mentioned in that, in some cases, users are concerned about security from traffic analysis. Knowledge about the number
and length of messages between nodes may enable an opponent to determine who is talking to whom. This can have obvious implications
ina military conflict. Even in commercial applications, traffic analysis may yield information that the traffic generators would like to conceal.
MUFET8Y] lists the following types of information that can be derived from a traffic analysis attack:

® |dentities of partners
® How frequently the partners are communicating
e Message pattern, message length, or quantity of messages that suggest important information is being exchanged

® The events that correlate with special conversations between particular partners

Another concern related to traffic is the use of traffic patterns to create a . A covert channel is a means of communication
in a fashion unintended by the designers of the communications facility. Typically, the channel is used to transfer information in a way that
violates a security policy. For example, an employee may wish to communicate information to an outsider in a way that is not detected by
management and that requires simple eavesdropping on the part of the outsider. The two participants could set up a code in which an
apparently legitimate message of a less than a certain length represents binary zero, whereas a longer message represents a binary one.
Other such schemes are possible.

Link Encryption Approach

With the use of link encryption, network-layer headers (e.g., frame or cell header) are encrypted, reducing the opportunity for traffic
analysis. However, it is still possible in those circumstances for an attacker to assess the amount of traffic on a network and to observe the
@ount of traffic entering and leaving each end system. An effective countermeasure to this attack is traffic padding, illustrated in

Figure 7.6. Traffic-Padding Encryption Device
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Traffic padding produces ciphertext output continuously, even in the absence of plaintext. A continuous random data stream is
generated. When plaintext is available, it is encrypted and transmitted. When input plaintext is not present, random data are encrypted and
transmitted. This makes it impossible for an attacker to distinguish between true data flow and padding and therefore impossible to deduce
the amount of traffic.

End-to-End Encryption Approach

Traffic padding is essentially a link encryption function. If only end-to-end encryption is employed, then the measures available to the
defender are more limited. For example, if encryption is implemented at the application layer, then an opponent can determine which
transport entities are engaged in dialogue. If encryption techniques are housed at the transport layer, then network-layer addresses and
traffic patterns remain accessible.

One technique that might prove useful is to pad out data units to a uniform length at either the transport or application level. In addition, null
messages can be inserted randomly into the stream. These tactics deny an opponent knowledge about the amount of data exchanged
between end users and obscure the underlying traffic pattern.

K==1
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7.3. Key Distribution

For symmetric encryption to work, the two parties to an exchange must share the same key, and that key must be protected from access
by others. Furthermore, frequent key changes are usually desirable to limit the amount of data compromised if an attacker learns the key.
Therefore, the strength of any cryptographic system rests with the key distribution technique, a term that refers to the means of delivering
a key to two parties who wish to exchange data, without allowing others to see the key. For two parties A and B, key distribution can be
achieved in a number of ways, as follows:

1. Acan select a key and physically deliver it to B.
2. Athird party can select the key and physically deliver it to A and B.

3. If Aand B have previously and recently used a key, one party can transmit the new key to the other, encrypted using the old
key.

4. If A and B each has an encrypted connection to a third party C, C can deliver a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this is a reasonable requirement, because each link encryption
device is going to be exchanging data only with its partner on the other end of the link. However, for end-to-end encryption, manual
delivery is awkward. In a distributed system, any given host or terminal may need to engage in exchanges with many other hosts and
terminals over time. Thus, each device needs a number of keys supplied dynamically. The problem is especially difficult in a wide area
distributed system.

The scale of the problem depends on the number of communicating pairs that must be supported. If end-to-end encryption is done at a
network or IP level, then a key is needed for each pair of hosts on the network that wish to communicate. Thus, if there are N hosts, the
number of required keys is [N(N 1)]/2. If encryption is done at the application level, then a key is needed for every pair of use|

processes that require communication. Thus, a network may have hundreds oosts but thousands of users and processes. ‘Fi;ure 7.}

illustrates the magnitude of the key distribution task for end-to-end encryption. 5 A network using node-level encryption with 1000 nodes
would conceivably need to distribute as many as half a million keys. If that same network supported 10,000 applications, then as many as

50 million keys may be required for application-level encryption.

I Note that this figure uses a log-log scale, so that a linear graph indicates exponential growth. A basic review of
og scales is in the math refresher document at the Computer Science Student Resource Site at

WilliamStallings.com/StudentSu pport.html.
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Figure 7.7. Number of Keys Required to Support Arbitrary Connections between Endpoints
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Returning to our list, option 3 is a possibility for either link encryption or end-to-end encryption, but if an attacker ever succeeds in gaining
access to one key, then all subsequent keys will be revealed. Furthermore, the initial distribution of potentially millions of keys must still be
made.

For end-to-end encryption, some variation on option 4 has been widely adopted. In this scheme, a key distribution center is responsible for
distributing keys to pairs of users (hosts, processes, applications) as needed. Each user must share a unique key with the key distribution
center for purposes of key distribution.
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The use of a key distribution center is based on the use of a hierarchy of keys. At a minimum, teys are use.
Fession keyl.

Communication between end systems is encrypted using a temporary key, often referred to as a Typically, the session key

is used for the duration of a logical connection, such as a frame relay connection or transport connection, and then discarded. Each

session key is obtained from the key distribution center over the same networking facilities used for end-user communication. Accordingly,
session keys are transmitted in encrypted form, using a naster keyjthat is shared by the key distribution center and an end system or user.

Figure 7.8. The Use of a Key Hierarchy
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For each end system or user, there is a unique master key that it shares with the key distribution center. Of course, these master keys
must be distributed in some fashion. However, the scale of the problem is vastly reduced. If there are N entities that wish to communicate
in pairs, then, as was mentioned, as many as [N(N 1)]/2 session keys are needed at any one time. However, onlyN master keys are
required, one for each entity. Thus, master keys can be distributed in some noncryptographic way, such as physical delivery.

A Key Distribution Scenario

The key

jstributi

n concept can be deployed in a number of ways. A typical scenario is illustrated in , which is based on a

figure in ||

POPE7

. The scenario assumes that each user shares a unique master key with thekey distribution center (KDC).

Figure 7.9. Key Distribution Scenario
(This item is displayed on page 213 in the print version)
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Let us assume that user A wishes to establish a logical connection with B and requires a one-time session key to protect the data
transmitted over the connection. A has a master key, Ka, known only to itself and the KDC; similarly, B shares the master keXp with the
KDC. The following steps occur:

1. A issues a request to the KDC for a session key to protect a logical connection@B. The message includes the identity of A and

B and a unique identifier, N1, for this transaction, which we refer to as .
a random number; the minimum requirement is that it differs with each request. Also, to prevent masquerade, it should be
difficult for an opponent to guess the nonce. Thus, a random number is a good choice for a nonce.

The nonce may be a timestamp, a counter, or

61 The following definitions are useful in understanding the purpose of the nonce componentNonce: The
present or particular occasion. Nonce word: A word occurring, invented, or used just for a particular
occasion. From the American Heritage Dictionary of the English Language, 3rd ed.
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2. The KDC responds with a message encrypted using Ka Thus, A is the only one who can successfully read the message, and A
knows that it originated at the KDC. The message includes two items intended for A:
® The one-time session key, Ks, to be used for the session

® The original request message, including the nonce, to enable A to match this response with the appropriate request

Thus, A can verify that its original request was not altered before reception by the KDC and, because of the nonce, that this is
not a replay of some previous request.

In addition, the message includes two items intended for B:



® The one-time session key, Ks to be used for the session
® Anidentifier of A (e.g., its network address), IDA

These last two items are encrypted withKp (the master key that the KDC shares with B). They are to be sent to B to establish the
connection and prove A's identity.
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3. A stores the session key for use in the upcoming session and forwards to B the information that originated at the KDC for B,
namely, E(Kb, [Ks || IDA]). Because this information is encrypted withKp, it is protected from eavesdropping. B now knows the
session key (Ks), knows that the other party is A (fromIDA), and knows that the information originated at the KDC (because it is
encrypted using Kp).

At this point, a session key has been securely delivered to A and B, and they may begin their protected exchange. However, two
additional steps are desirable:

4. Using the newly minted session key for encryption, B sends a nonce2, to A.

5. Also using Ks, A responds with f(N2), where f is a function that performs some transformation orN2 (e.g., adding one).

These steps assure B that the original message it received (step 3) was not a replay.

Note that the actual key distribution involves only steps 1 through 3 but that steps 4 and 5, as well as 3, perform an authentication function.

Hierarchical Key Control

It is not necessary to limit the key distribution function to a single KDC. Indeed, for very large networks, it may not be practical to do so. As
an alternative, a hierarchy of KDCs can be established. For example, there can be local KDCs, each responsible for a small domain of the
overall internetwork, such as a single LAN or a single building. For communication among entities within the same local domain, the local
KDC is responsible for key distribution. If two entities in different domains desire a shared key, then the corresponding local KDCs can
communicate through a global KDC. In this case, any one of the three KDCs involved can actually select the key. The hierarchical concept
can be extended to three or even more layers, depending on the size of the user population and the geographic scope of the internetwork.

A hierarchical scheme minimizes the effort involved in master key distribution, because most master keys are those shared by a local KDC
with its local entities. Furthermore, such a scheme limits the damage of a faulty or subverted KDC to its local area only.

Session Key Lifetime

The more frequently session keys are exchanged, the more secure they are, because the opponent has less ciphertext to work with for
any given session key. On the other hand, the distribution of session keys delays the start of any exchange and places a burden on
network capacity. A security manager must try to balance these competing considerations in determining the lifetime of a particular
session key.

For connection-oriented protocols, one obvious choice is to use the same session key for the length of time that the connection is open,
using a new session key for each new session. If a logical connection has a very long lifetime, then it would be prudent to change the
session key periodically, perhaps every time the PDU (protocol data unit) sequence number cycles.



For a connectionless protocol, such as a transaction-oriented protocol, there is no explicit connection initiation or termination. Thus, it is
not obvious how often  one needs to change the session key. The most secure approach is to use a new session key for each
exchange. However, this negates one of the principal benefits of connectionless protocols, which is minimum overhead and delay for each
transaction. A better strategy is to use a given session key for a certain fixed period only or for a certain number of transactions.
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A Transparent Key Control Scheme

The approach suggested in has many variations, one of which is described in this subsection. The scheme ) is useful
for providing end-to-end encryption at a network or transport level in a way that is transparent to the end users. The approach assumes
that communication makes use of a connection-oriented end-to-end protocol, such as TCP. The noteworthy element of this approach is a
session security module (SSM), which may consists of functionality at one protocol layer, that performs end-to-end encryption and obtains
session keys on behalf of its host or terminal.

Figure 7.10. Automatic Key Distribution for Connection-Oriented Protocol
(This item is displayed on page 216 in the print version)
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The steps involved in establishing a connection are shown in the figure. When one host wishes to set up a connection to another host, it
transmits a connection-request packet (step 1). The SSM saves that packet and applies to the KDC for permission to establish the
connection (step 2). The communication between the SSM and the KDC is encrypted using a master key shared only by this SSM and the



KDC. If the KDC approves the connection request, it generates the session key and delivers it to the two appropriate SSMs, using a
unique permanent key for each SSM (step 3). The requesting SSM can now release the connection request packet, and a connection is
set up between the two end systems (step 4). All user data exchanged between the two end systems are encrypted by their respective
SSMs using the one-time session key.

The automated key distribution approach provides the flexibility and dynamic characteristics needed to allow a number of terminal users to
access a number of hosts and for the hosts to exchange data with each other.

Decentralized Key Control

The use of a key distribution center imposes the requirement that the KDC be trusted and be protected from subversion. This requirement
can be avoided if key distribution is fully decentralized. Although full decentralization is not practical for larger networks using symmetric
encryption only, it may be useful within a local context.

A decentralized approach requires that each end system be able to communicate in a secure manner with all potential partner end
systems for purposes of session key distribution. Thus, there may need to be as many as [n(n 1)]/2 master keys for a configuration withn
end systems.

A session key may be established with the following sequence of steps ( :

1. A issues a request to B for a session key and includes a noncelN1

2. B responds with a message that is encrypted using the shared master key. The response includes the session key selected by
B, an identifier of B, the value f(N1), and another nonce, N2.

3. Using the new session key, A returns f(N2) to B.
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Figure 7.11. Decentralized Key Distribution

lView full size image|

//——'_“”H_Ni."ﬂ, x\‘

{; Initiat {Rﬁipnnd
N A B
(2) EIMK,.., [K, 1D 10 D LGN, 0N —/

(3 E(K,. lIN:1)




Thus, although each node must maintain at most fi 1) master keys, as many session keys as required may be generated and used.
Because the messages transferred using the master key are short, cryptanalysis is difficult. As before, session keys are used for only a
limited time to protect them.

Controlling Key Usage

The concept of a key hierarchy and the use of automated key distribution techniques greatly reduce the number of keys that must be
manually managed and distributed. It may also be desirable to impose some control on the way in which automatically distributed keys are
used. For example, in addition to separating master keys from session keys, we may wish to define different types of session keys on the
basis of use, such as

® Data-encrypting key, for general communication across a network
® PIN-encrypting key, for personal identification numbers (PINs) used in electronic funds transfer and point-of-sale applications

® File-encrypting key, for encrypting files stored in publicly accessible locations

To illustrate the value of separating keys by type, consider the risk that a master key is imported as a data-encrypting key into a device.
Normally, the master key is physically secured within the cryptographic hardware of the key distribution center and of the end systems.
Session keys encrypted with this master key are available to application programs, as are the data encrypted with such session keys.
However, if a master key is treated as a session key, it may be possible for an unauthorized application to obtain plaintext of session keys
encrypted with that master key.

Thus, it may be desirable to institute controls in systems that limit the . a hich keys . ed, based on characteristics associated
with those keys. One simple plan is to associate a tag with each key ( ; see also AVI8 1). The proposed technique is for use
with DES and makes use of the extra 8 bits in each 64-bit DES key. That is, the 8 nonkey bits ordinarily reserved for parity checking form
the key tag. The bits have the following interpretation:

®  One bit indicates whether the key is a session key or a master key.
® One bit indicates whether the key can be used for encryption.
®  One bit indicates whether the key can be used for decryption.

® The remaining bits are spares for future use.
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Because the tag is embedded in the key, it is encrypted along with the key when that key is distributed, thus providing protection. The
drawbacks of this scheme are that (1) the tag length is limited to 8 bits, limiting its flexibility and functionality; and (2) because the tag is not
transmitted in clear form, it can be used only at the point of decryption, limiting the ways in which key use can be controlled.

A more flexible scheme, referred to as the control vector, is described in [[MATY914 andﬂ]. In this scheme, each session key has an
associated control vector consisting of a number of fields that specify the uses and restrictions for that session key. The length of the
control vector may vary.

The control vector is cryptographically coupled with the key at the time of key generation at the KDC. The coupling and decoupling
processes are illustrated in . As a first step, the control vector is passed thyg hash function that produces a value whose
length is equal to the encryption key length. Hash functions are discussed in detail in ‘.
from a larger range into a smaller range, with a reasonably uniform spread. Thus, for example, if numbers in the range 1 to 100 are
hashed into numbers in the range 1 to 10, approximately 10% of the source values should map into each of the target values.

In essence, a hash function maps values



Figure 7.12. Control Vector Encryption and Decryption
(This item is displayed on page 219 in the print version)
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The hash value is then XORed with the master key to produce an output that is used as the key input for encrypting the session key. Thus,

Hash value = H = h(CV)
Key input = Km $H

Ciphertext = E(Km $H], Ks)

where Km is the master key andKs is the session key. The session key is recovered in plaintext by the reverse operation:

D([Km $H], E(Km $ H], Ks))

When a session key is delivered to a user from the KDC, it is accompanied by the control vector in clear form. The session key can be
recovered only by using both the master key that the user shares with the KDC and the control vector. Thus, the linkage between the
session key and its control vector is maintained.

Use of the control vector has two advantages over use of an 8-bit tag. First, there is no restriction on length of the control vector, which
enables arbitrarily complex controls to be imposed on key use. Second, the control vector is available in clear form at all stages of
operation. Thus, control of key use can be exercised in multiple locations.

K==1
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7.4. Random Number Generation

Random numbers play an important role in the use of encryption for various network security applications. In this section, we provide a
brief overview of the use of random numbers in network security and then look at some approaches to generating random numbers.
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The Use of Random Numbers

A number of network security algorithms based on cryptography make use of random numbers. For example,

L4 Reciprocal authentication schemes, such as illustrated in and . In both of these key distribution scenarios,
nonces are used for handshaking to prevent replay attacks. The use of random numbers for the nonces frustrates opponents'

efforts to determine or guess the nonce.
® Session key generation, whether done by a key distribution center or by one of the principals.

® Generation of keys for the RSA public-key encryption algorithm (described in ).

These applications give rise to two distinct and not necessarily compatible requirements for a sequence of random numbers: randomness
and unpredictability.

Randomness

Traditionally, the concern in the generation of a sequence of allegedly random numbers has been that the sequence of numbers be
random in some well-defined statistical sense. The following two criteria are used to validate that a sequence of numbers is random:

® yniform distribution: The distribution of numbers in the sequence should be uniform; that is, the frequency of occurrence of
each of the numbers should be approximately the same.

® Independence: No one value in the sequence can be inferred from the others.

Although there are well-defined tests for determining that a sequence of numbers matches a particular distribution, such as the uniform
distribution, there is no such test to "prove" independence. Rather, a number of tests can be applied to demonstrate if a sequence does
not exhibit independence. The general strategy is to apply a number of such tests until the confidence that independence exists is
sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that appear statistically random often occurs in the design of
F i related to cryptography. For example, a fundamental requirement of the RSA public-key encryption scheme discussed in
Chapter d is the ability to generate prime numbers. In general, it is difficult to determine if a given large numbeN is prime. A brute-force

—
approach would be to divide N by every odd integer less thar J""-f -'h"'l . IfN is on the order, say, of 10150. a not uncommon occurrence in



public-key cryptography, such a brute-force approach is beyond the reach of human analysts and their computers. However, a number of
effective algorithms exist that test the primality of a number by using a sequence of randomly chosen integers as input to relatively simple
i

150}
computations. If the sequence is sufficiently long (but far, far less than -\"-'f 1 ﬂ . ), the primality of a number can be determined with
near certainty. This type of approach, known as randomization, crops up frequently in the design of algorithms. In essence, if a problem is
too hard or time-consuming to solve exactly, a simpler, shorter approach based on randomization is used to provide an answer with any
desired level of confidence.

Unpredictability

In applications such as reciprocal authentication and session key generation, the requirement is not so much that the sequence of
numbers be statistically random but that the successive members of the sequence are unpredictable. With “true" random sequences,
each number is statistically independent of other numbers in the sequence and therefore unpredictable. However, as is discussed shortly,
true random numbers are seldom used; rather, sequences of numbers that appear to be random are generated by some algorithm. In this
latter case, care must be taken that an opponent not be able to predict future elements of the sequence on the basis of earlier elements.
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Pseudorandom Number Generators (PRNGS)

Cryptographic applications typically make use of algorithmic techniques for random number generation. These algorithms are
deterministic and therefore produce sequences of numbers that are not statistically random. However, if the algorithm is good, the
resulting sequences will pass many reasonable tests of randomness. Such numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated by a deterministic algorithm as if they were random
numbers, Despite what might be called philosophical objections to such a practice, it generally works. As one expert on probability theory
puts it [HAMMO1]]:

For practical purposes we are forced to accept the awkward concept of "relatively random" meaning that with
regard to the proposed use we can see no reason why they will not perform as if they were random (as the theory
usually requires). This is highly subjective and is not very palatable to purists, but it is what statisticians regularly
appeal to when they take "a random sample"they hope that any results they use will have approximately the same
properties as a complete counting of the whole sample space that occurs in their theory.

Linear Congruential Generators

By far, the most widely used technique for pseudorandom number generation is an algorithm first proposed by Lehmer LEHM51]], which
is known as the linear congruentialmethod. The algorithm is parameterized with four numbers, as follows:

m the modulus m>0
a the multiplier O<a<m
c the increment

O==c<m



X0 the starting value, or seed 'l::
0= Xo<m

The sequence of random numbers {Xn} is obtained via the following iterative equation:

Xn+1 = (aXn +c) mod m

If m, a, ¢, and X are integers, then this technique will produce a sequence of integers with each integer in the range == Xn < m.

The selection of values for a, ¢, and m is critical in developing a good random number generator. For example, consider, =c¢ = 1. The
sequence produced is obviously not satisfactory. Now consider the values a= 7, ¢ =0, m = 32, and X0 = 1. This generates the sequence
{7,117, 23, 1, 7, etc.}, which is also clearly unsatisfactory. Of the 32 possible values, only 4 are used; thus, the sequence is said to have a
period of 4. If, instead, we change the value of ato 5, then the sequence is {5, 25, 29, 17, 21, 9, 13, 1, 5, etc.}, which increases the period
to 8.
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We would like m to be very large, so that there is the potential for producing a long series of distinct random numbers. A common criterion
is that m be nearly equal to the maximum representable nonnegative integer for a given computer. Thus, a value ah near to or equal to

2?’l is typically chosen.

IPARKS8Y] proposes three tests to be used in evaluating a random number generator:

T1: The function should be a full-period generating function. That is, the function should generate all the numbers
between 0 and m before repeating.

T2: The generated sequence should appear random. Because it is generated deterministically, the sequence is not
random. There is a variety of statistical tests that can be used to assess the degree to which a sequence exhibits
randomness.

T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, ¢, and m, these three tests can be passed. With respect to T it can be shown that ifm is prime andc = 0,
then for certain values of a, the period of the generating function ism 1, with only the value 0 missing. For 32-bit arithmetic, a convenient

prime value of m is 231 1. Thus, the generating function becomes
Xn+1 = (aXn) mod(2°L 1)

Of the more than 2 billion possible choices for a, only a handful of multipliers pass all three tests. One such value isa = 75 = 16807, which
was originally designed for use in the IBM 360 family of computers [LEWI6Y]. This generator is widely used and has been sub. a
more thorough testing than any other PRNG. It is frequently recommended for statistical and simulation work (e.g., [JAIN9]]], ‘SAUES ).

The strength of the linear congruential algorithm is that if the multiplier and modulus are properly chosen, the resulting sequence of
numbers will be statistically indistinguishable from a sequence drawn at random (but without replacement) from the set 1, 2,...,m 1. But
there is nothing random at all about the algorithm, apart from the choice of the initial value X0. Once that value is chosen, the remaining
numbers in the sequence follow deterministically. This has implications for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and if the parameters are known (e.g., a =75, c=0,m= 231 1),
then once a single number is discovered, all subsequent numbers are known. Even if the opponent knows only that a linear congruential
algorithm is being used, knowledge of a small part of the sequence is sufficient to determine the parameters of the algorithm. Suppose

that the opponent is able to determine values for X0, X1, X2 and X3 Then

X1 =(aXp+c) modm



X2 =(aX1+c) modm

X3 =(aX2+c) modm

These equations can be solved for a, ¢, andm.
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Thus, although it is nice to be able to use a good PRNG, it is desirable to make the actual sequence used nonreproducible, so that
knowledge of part of the sequence on the part of an opponent is insufficient to determine future elements of the sequence. This goal can
be achieved in a number of ways. For example, ] suggests using an internal system clock to modify the random number stream.
One way to use the clock would be to restart the sequence after every N numbers using the current clock value (modm) as the new seed.
Another way would be simply to add the current clock value to each random number (mod m).

Cryptographically Generated Random Numbers

For cryptographic applications, it makes some sense to take advantage of the encryption logic available to produce random numbers. A
number of means have been used, and in this subsection we look at three representative examples.

Cyclic Encryption

illustrates an approach suggested in MEYE8]. In this case, the procedure is used to generate session keys from a master
key. A counter with period N provides input to the encryption logic. For example, if 56-bit DES keys are to be produced, then a counter

with period 256 can be used. After each key is produced, the counter is incremented by one. Thus, the pseudorandom numbers produced
by this scheme cycle through a full period: Each of the outputs X0, X1,... XN1 is based on a different counter value and thereforeXo i

X1 i i XN1. Because the master key is protected, it is not computationally feasible to deduce any of the session keys (random
numbers) through knowledge of one or more earlier session keys.

Figure 7.13. Pseudorandom Number Generation from a Counter

Counter with
Period N

T

C+1



Master key
Ky =

Encryption
algorithm

X; =E[K,, C + 1]

[Page 224]

To strengthen the algorithm further, the input could be the output of a full-period PRNG rather than a simple counter.

DES Output Feedback Mode

The output feedback (OFB) mode of DES, illustrated in , can be used for key generation as well as for stream encryption. Notice
that the output of each stage of operation is a 64-bit value, of which the s leftmost bits are fed back for encryption. Successive 64-bit
outputs constitute a sequence of pseudorandom numbers with good statistical properties. Again, as with the approach suggested in the
preceding subsection, the use of a protected master key protects the generated session keys.

ANSI X9.17 PRNG

One of the strongest (cryptographically speaking) PRNGs is specified in ANSI X9.17. A number of applications employ this technique,
including financial security applications and PGP (the latter described in .

illustrates the algorithm, which makes use of triple DES for encryption. The ingredients are as follows:

® Input: Two pseudorandom inputs drive the generator. One is a 64-bit representation of the current date and time, which is
updated on each number generation. The other is a 64-bit seed value; this is initialized to some arbitrary value and is updated
during the generation process.

® Keys: The generator makes use of three triple DES encryption modules. All three make use of the same pair of 56-bit keys,
which must be kept secret and are used only for pseudorandom number generation.

® Output: The output consists of a 64-bit pseudorandom number and a 64-bit seed value.

Define the following quantities:



DTj Date/time value at the beginning of ith generation stage

Vi Seed value at the beginning of ith generation stage
Rj Pseudorandom number produced by theith generation stage
K1, K2 DES keys used for each stage

Figure 7.14. ANSI X9.17 Pseudorandom Number Generator
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Then
Ri = EDE([K1, K2], [Vi $ EDE([K1, K2], DTi)])

Vi+1 = EDE([K1, K2], [Ri $ EDE([K1, K2], DTi)])
where EDE([K1,K2], X) refers to the sequence encrypt-decrypt-encrypt using two-key triple DES to encrypiX.

Several factors contribute to the cryptographic strength of this method. The technique involves a 112-bit key and three EDE encryptions



for a total of nine DES encryptions. The scheme is driven by two pseudorandom inputs, the date and time value, and a seed produced by
the generator that is distinct from the pseudorandom number produced by the generator. Thus, the amount of material that must be
compromised by an opponent is overwhelming. Even if a pseudorandom number Rj were compromised, it would be impossible to deduce
the Vi+1 from the Rj because an additional EDE operation is used to produce the ¥41.

Blum Blum Shub Generator

A popular a {0 generating secure pseudorandom number is known as the Blum, Blum, Shub (BBS) generator, named for its
developers [BLUMS84]. It has perhaps the strongest public proof of its cryptographic strength. The procedure is as follows. First, choose
two large prime numbers, p and g, that both have a remainder of 3 when divided by 4. That is,

quE3(mod4)

This notation, explained more fully in , simply means that (p mod 4) = (g mod 4) = 3. For example, the prime numbers 7 and 11

satisfy 7 == 11 == 3 (mod 4). Letn = p x g. Next, choose a random numbers, such thats is relatively prime ton; this is equivalent to
saying that neither p nor q is a factor of s. Then the BBS generator produces a sequence of bits Baccording to the following algorithm:

X0= 52 mod n

fori=1to &
Xj = (Xil)2 mod n
Bi = Xj mod 2

Thus, the least significant bit is taken at each iteration. , shows an example of BBS operation. Here,n = 192649 = 383 x 503 and
the seed s = 101355.



Table 7.2. Example Operation of BBS Generator
(This item is displayed on page 226 in the print version)

i Xi Bi

0 20749
1 143135 1
2 177671 1
3 97048 0
4 89992 0
5 174051 1
6 80649 1
7 45663 1
8 69442 0
9 186894 0
10 177046 0
11 137922 0
12 123175 1
13 8630 0
14 114386 0
15 14863 1
16 133015 1
17 106065 1
18 45870 0
19 137171 1
20 48060 0

The BBS is referred to as a cryptographically secure pseydorandom bit generator (CSPRBG). A CSPRBG is defined as one that
passes the next-bit test, which, in turn, iefined as follows MENE91]: A pseudorandom bit generator is said to pass the next-bit test if

there is not a polynomial-time algorithm L that, on input of the firstk bits of an output sequence, can predict the k + 1)8t bit with probability
significantly greater than 1/2. In other words, given the first k bits of the sequence, there is not a practical algorithm that can even allow
you to state that the next bit will be 1 (or 0) with probability greater than 1/2. For all practical purposes, the sequence is unpredictable.
The security of BBS is based on the difficulty of factoring n. That is, givenn, we need to determine its two prime factorsp and g.

U polynomial-time algorithm of orderk is one whose running time is bounded by a polynomial of orderk.
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True Random Number Generators

A true random number generator (TRNG) uses a nondeterministic source to produce randomness. Most operate by measuring
unpredictable natural processes, such as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky capacitors. Intel has
developed a commercially available chip that samples thermal noise by amplifying the voltage measured across undriven resistors
. A group at Bell Labs has developed a technique that uses the variations in the response time of raw read requests for one disk
sector of a hard disk _. LavaRnd is an open source project for creating truly random numbers using inexpensive cameras, open

source code, and inexpensive hardware. The system uses a saturated CCD in a light-tight can as a chaotic source to produce the seed.
Software processes the result into truly random numbers in a variety of formats.

There are problems both with the randomness and the precision of such numbers , to say nothing of the clumsy requirement of
attaching one of these devices {q eye tem in an internetwork. Another alternative is to dip into a published collection of good-quality
random numbers (e.g.,, ). However, these collections provide a very limited source of numbers compared to the
potential requirements of a sizable network security application. Furthermore, although the numbers in these books do indeed exhibit
statistical randomness, they are predictable, because an opponent who knows that the book is in use can obtain a copy.

Skew

A true random number generator may produce an output that is biased in some way, such as having more ones than zeros or vice versa.
Various methods of modifying a bit stream to reduce or eliminate the bias have been developed. These are referred to as deskewing
algorithms. One approach to deskew is to pass the bit stream through a hash function such as MD5 or SHA-1 (described ). The

hash function produces an n-bit output from an input of arbitrary length. For deskewing, blocks of m input bits, withm #=== n can be
passed through the hash function.

[Page 227]
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[Page 227 (continued)]

7.5. Recommended Reading and Web Sites

[EUMY9J] is a good survey of key management principles.

Perhaps the best treatment of PRNGs is found in ||
linear recurrence algorithm, is explained in some detail in

|ternati the standard linear congruential algorithm, known as the
BRIG79]. [EZENG91]] assesses various PRNG algorithms for use in generating

variable-length keys for Vernam types of ciphers.

An excellent survey of PRNGs, with an extensive bibliography, is [RITT91]. [MENEQ7] also provides a good discussions of secure

PRNGs. Another good treafment, with an emphasis on practical implementation issues, is RFC 1750. This RFC also describes a number
of deskewing techniques. d ELS9{] is a good survey of secure PRNG techniques and cryptanalytic attacks on them.

BRIG79 Bright, H., and Enison, R. "Quasi-Random Number Sequences from Long-Period TLP Generator with
Remarks on Application to Cryptography." Computing Surveys, December 1979.

UMY93 Fumy, S., and Landrock, P. "Principles of Key Management."IEEE Journal on Selected Areas in

Communications, June 1993.

ELS99 Kelsey, J.; Schneier, B.; and Hall, C. fummmwmmmmber Generators."
Proceedings, Fast Software Encryption, 1998. http://www.schneier.com/paper-prngs.html|

NUT94 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Reading, MA:

Addison-Wesley, 1998.

ENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S.Handbook of Applied Cryptography. Boca Raton, FL:

CRC Press, 1997.

ITT9
1991. http://www.ciphersbyritter.com/ARTS/CRNG2ART.HT

fusion Sequences."Cryptologia, vol. 15 no. 2,

VENG9] Zeng. K.; Yang, C.; Wei, D.; and Rao, T. "Pseudorandom Bit Generators in Stream-Cipher

Cryptography." Computer, February 1991.

.. Recommended Web Sites

® \|ST Random Number Generation Technical Working Group: Contains documents and tests developed by NIST that
related to PRNGs for cryptographic applications. Also has useful set of links.


http://www.schneier.com/paper-prngs.html
http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM
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® | avaRnd: LavaRnd is an open source project that uses a chaotic source to generate truly random numbers. The site also
has background information on random numbers in general.

® A Million Random Digits: Compiled by the RAND Corporation.

E=a wExT
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7.6. Key Terms, Review Questions, and Problems
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Review Questions

7.1  For a user workstation in a typical business environment, list potential locations for confidentiality attacks.

7.2  What is the difference between link and end-to-end encryption?
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7.3

7.4

7.5

7.6

7.7

7.8

7.9

Problems

7.1 Electronic mail systems differ in the manner in which multiple recipients are handled. In some systems, the originating
mail-handler makes all the necessary copies, and these are sent out independently. An alternative approach is to
determine the route for each destination first. Then a single message is sent out on a common portion of the route, and
copies are made only when the routes diverge; this process is referred to as mail bagging.

7.2 describes the use of message length as a means of constructing a covert channel. Describe three additional

What types of information might be derived from a traffic analysis attack?

What is traffic padding and what is its purpose?

List ways in which secret keys can be distributed to two communicating parties.

What is the difference between a session key and a master key?

What is a nonce?

What is a key distribution center?

What is the difference between statistical randomness and unpredictability?

a. Leaving aside considerations of security, discuss the relative advantages and disadvantages of the two methods.

b. Discuss the security requirements and implications of the two methods.

schemes for using traffic patterns to construct a covert channel.

7.3 One local area network vendor provides a key distribution facility, as illustrated in .

a. Describe the scheme.

b. Compare this scheme to that of . What are the pros and cons?
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Figure 7.15. Figure for Problem 7.3
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"We are under great pressure, Holmes." Detective Lestrade looked nervous. "We have learned that copies of sensitive
government documents are stored in computers of one foreign embassy here in London. Normally these documents exist
in electronic form only on a selected few government computers that satisfy the most stringent security requirements.
However, sometimes they must be sent through the network connecting all government computers. But all messages in
this network are encrypted using a top secret encryption algorithm certified by our best crypto experts. Even the NSA and
the KGB are unable to break it. And now these documents have appeared in hands of diplomats of a small, otherwise
insignificant, country. And we have no idea how it could happen."”

"But you do have some suspicion who did it, do you?" asked Holmes.

"Yes, we did some routine investigation. There is a man who has legal access to one of the government computers and
has frequent contacts with diplomats from the embassy. But the computer he has access to is not one of the trusted ones
where these documents are normally stored. He is the suspect, but we have no idea how he could obtain copies of the
documents. Even if he could obtain a copy of an encrypted document, he couldn't decrypt it."

"Hmm, please describe the communication protocol used on the network." Holmes opened his eyes, thus proving that he
had followed Lestrade's talk with an attention that contrasted with his sleepy look.

"Well, the protocaol is as follows. Each node N of the network has been assigned a unique secret key Kn. This key is used
to secure communication between the node and a trusted server. That is, all the keys are stored also on the server. User
A, wishing to send a secret message M to user B, initiates the following protocol:

1. A generates a random number R and sends to the server his name A, destination B, and Ba, R).

2. Server responds by sending to E(Kp, R) to A.

3. Asends E(R, M) together with E(Kp, R) to B.

4. B knows Kp, thus decrypts EKp, R) to get R and will subsequently useR to decrypt E(R, M) to get M.

You see that a random key is generated every time a message has to be sent. | admit the man could intercept messages
sent between the top secret trusted nodes, but | see no way he could decrypt them."

[Page 230]

"Well, | think you have your man, Lestrade. The protocol isn't secure because the server doesn't authenticate users who
send him a request. Apparently designers of the protocol have believed that sending E(Kx, R) implicitly authenticates user
X as the sender, as only X (and the server) knows Ky But you know that E(Kx, R) can be intercepted and later replayed.



7.5

7.6

7.7

7.8

7.9

7.10

Once you understand where the hole is, you will be able to obtain enough evidence by monitoring the man's use of the
computer he has access to. Most likely he works as follows. After intercepting E(Ka, R) and E(R, M) (see steps 1 and 3 of
the protocol), the man, let's denote him as Z, will continue by pretending to be A and ...

Finish the sentence for Holmes.

If we take the linear congruential algorithm with an additive component of O:

Xn+1 = (aXn) mod m

then it can be shown that if m is prime, and if a given value ofa produces the maximum period of m 1, then awill also
produce the maximum period, provided that k is less thanm and thatm 1 is not divisible byk. Demonstrate this by usingXo

=1 and m = 31 and producing the sequences fora = 3, 3,2, 33, and 3.

a. What is the maximum period obtainable from the following generator?
Xn+1 = (aXn) mod *
b. What should be the value ofa?

c. What restrictions are required on the seed?

You may wonder why the modulus m = 2%1 1 was chosen for the linear congruential method instead of simply fl, because

this latter number can be represented with no additional bits and the mod operation should be easier to perform. In

general, the modulus X1is preferable to X Why is this so?

With the linear congruential algorithm, a choice of parameters that provides a full period does not necessarily provide a
good randomization. For example, consider the following two generators:

Xn+1 = (6Xn) mod 13

Xn+1 = (7Xn) mod 13

Write out the two sequences to show that both are full period. Which one appears more random to you?

In any use of pseudorandom numbers, whether for encryption, simulation, or statistical design, it is dgngerous to trust
blindly the random number generator that happens to be available in your computer's system Iibrary. found that
many contemporary textbooks and programming packages make use of flawed algorithms for pseudorandom number
generation. This exercise will enable you to test your system.

The test is based on a theorem attributed to Ernesto Cesaro (see [KNUT9§] for a proof), which states the following: Given

two randomly chosen integers, x andy, the probability that gcdk, y) = 1 is G/pz. Use this theorem in a program to determine
statistically the value of p. The main program should call three subprograms: the random number generator from the
system library to generate the random integers; a subprogram to calculate the greatest common divisor of two integers
using Euclid's Algorithm; and a subprogram that calculates square roots. If these latter two programs are not available, you
will have to write them as well. The main program should loop through a large number of random numbers to give an
estimate of the aforementioned probability. From this, it is a simple matter to solve for your estimate of p.

If the result is close to 3.14, congratulations! If not, then the result is probably low, usually a value of around 2.7. Why
would such an inferior result be obtained?

Suppose you have a true random bit generator where each bit in the generated stream has the same probability of being a
0 or 1 as any other bit in the stream and that the bits are not correlated; that is the bits are generated from identical

independent distribution. However, the bit stream is biased. The probability of a 1 is 0.5 + and the probability of a 0 is



0.5 5 where 0 < 'a < 0.5. A simple deskewing algorithm is as follows: Examine the bit stream as a sequence of
non-overlapping pairs. Discard all 00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.

[Page 231]
a. What is the probability of occurrence of each pair in the original sequence?
b. What is the probability of occurrence of 0 and 1 in the modified sequence?
c. What is the expected number of input bits to producex output bits?

d. Suppose that the algorithm uses overlapping successive bit pairs instead of nonoverlapping successive bit pairs.
That is, the first output bit is based on input bits 1 and 2, the second output bit is based on input bits 2 and 3, and
so on. What can you say about the output bit stream?

7.11  Another approach to deskewing is to consider the bit stream as a sequence of non-overlapping groups of n bits each and
the output the parity of each group. That is, if a group contains an odd number of ones, the output is 1; otherwise the
output is 0.

a. Express this operation in terms of a basic Boolean function.

b. Assume, as in the preceding problem, that the probability of a 1 is 0.5 + a . If each group consists of 2 bits, what
is the probability of an output of 1?

c. If each group consists of 4 bits, what is the probability of an output of 1?

d. Generalize the result to find the probability of an output of 1 for input groups of bits.

7.12  Suppose that someone suggests the following way to confirm that the two of you are both in possession of the same
secret key. You create a random bit string the length of the key, XOR it with the key, and send the result over the channel.
Your partner XORs the incoming block with the key (which should be the same as your key) and sends it back. You check,
and if what you receive is your original random string, you have verified that your partner has the same secret key, yet
neither of you has ever transmitted the key. Is there a flaw in this scheme?

E==a wexT
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Part Two: Public-Key Encryption and Hash
Functions

For practical reasons, it is desirable to use different encryption and decryption keys in a
crypto-system. Such asymmetric systems allow the encryption key to be made available to
anyone while preserving confidence that only people who hold the decryption key can
decipher the information.

Computers at Risk: Safe Computing in the Information Age, National Research Council,
1991

After symmetric encryption, the other major form of encryption is public-key encryption, which has revolutionized
communications security. A related cryptographic area is that of cryptographic hash functions. Hash functions are
used in conjunction with symmetric ciphers for digital signatures. In addition, hash functions are used for message
entication. Symmetric ciphers are also used for key management. All of these areas are discussed in Part

wd

Road Map for Part Two

: Introduction to Number Theory

Most public-key schemes are based on number theory. While the reader can take the number
heoretic results on faith, it is useful to have a basic grasp of the concepts of number theory.
Chapter § provides an overview and numerous examples to clarify the concepts.

: Public-Key Cryptography and RSA

introduces public-key cryptography and concentrates on its use to provide
confidentiality. This chapter also examines the most widely used public-key cipher, the
Rivest-Shamir-Adleman (RSA) algorithm.
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: Key Management; Other Public-Key Cryptosystems

revisits the issue of key management in light of the capabilities of symmetric ciphers.
The chapter also covers the widely used Diffie-Hellman key exchange technique and looks at a
more recent public-key approach based on elliptic curves.

: Message Authentication and Hash Functions

Of equal importance to confidentiality as a security measure is authentication. At a minimum,
message authentication assures that a message comes from the alleged source. In addition,
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thentication can include protection against modification, delay, replay, and reordering.
ﬂ begins with an analysis of the requirements for authentication and then provides a systematic
presentation of approaches to authentication. A key element of authentication schemes is the use
of an authenticator, usually either a message authentication code (MAC) or a hash function.
Design considerations for both of these types of algorithms are examined, and several specific
examples are analyzed.

: Hash and MAC Algorithms

extends the discussion of the preceding chapter to discuss two of the most important
cryptographic hash functions (SHA and Whirlpool) and two of the most important MACs (HMAC)
and CMAC.

: Digital Signatures and Authentication Protocols

An important type of authentication is the digital signature. examines the techniques
used to construct digital signatures and looks at an important standard, the Digital Signature
Standard (DSS).

The various authentication techniques based on digital signatures are building blocks in putting

together authentication algorithms. The design of such algorithms involves the analysis of subtle
ﬂaeks that can defeat many apparently secure protocols. This issue is also addressed in

NEXT B
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The Devil said to Daniel Webster: "Set me a task | can't carry out, and I'll give you anything in the world you ask
for."

Daniel Webster: "Fair enough. Prove that for n greater than 2, the equation an + bn = cn has no non-trivial solution
in the integers."

They agreed on a three-day period for the labor, and the Devil disappeared.

At the end of three days, the Devil presented himself, haggard, jumpy, biting his lip. Daniel Webster said to him,
"Well, how did you do at my task? Did you prove the theorem?"

"Eh? No ... no, | haven't proved it."
"Then | can have whatever | ask for? Money? The Presidency?"
"What? Oh, thatof course. But listen! If we could just prove the following two lemmas"

The Mathematical Magpie, Clifton Fadiman

Key Points

® A prime number is an integer that can only be divided without remainder by positive and negative values of
itself and 1. Prime numbers play a critical role both in number theory and in cryptography.

® Two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem

® An important requirement in a number of cryptographic algorithms is the ability to choose a large prime
number. An area of ongoing research is the development of efficient algorithms for determining if a
randomly chosen large integer is a prime number.

® Discrete logarithms are fundamental to a number of public-key algorithms. Discrete logarithms are
analogous to ordinary logarithms, but operate over modular arithmetic.

A number of concepts from number theory are essential in the design of public-key cryptographic algorithms. This chapter provides an
overview of the concepts referred to in other chapters. The reader familiar with these topics can safely skip this chapter.

As With this chapter includes a number of examples, each of which is highlighted in a shaded box.

e prey | NEXT B
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8.1. Prime Numbers

(1]

would introduce no essential differences.

IBE9H]). In this section we provide an overview relevant to the concerns of this book.

In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative integers

al concern of number theory is the study of prime numbers. Indeed, whole books have been written on the subject (e.g., CRANOT],

An integer p > 1 is a prime number if and only if its only divisor are = 1 and #p. Prime numbers play a critical role in number theory and in
the techniques discussed in this chapter. shows the primes less than 2000. Note the way the primes are distributed. In particular,

note the number of primes in each range of 100 numbers.

2 Recall from that integera is said to be a divisor of integerb if there is no remainder on division.

Equivalently, we say that a divides b.

Table 8.1. Primes under 2000

(This item is displayed on page 237 in the print version)
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Any integer a> 1 can be factored in a unique way as



Equation 8-1

il i,

a = pips...ps

where pl <p2 < ... < pt are prime numbers and where each is a positive integer. This is known as the fundamental theorem of arithmetic; a

proof can be found in any text on number theory.

91 =7x13
3600 _ 24 X 32 X 52
11011 _ 7x 112 x 13

It is useful for what follows to express this another way. If P is the set of all prime numbers, then any positive integer a can be written
uniquely in the following form:

a= J[p% whereeacha, =0
p=P

The right-hand side is the product over all possible prime numbers p; for any particular value ofa, most of the exponentsap will be 0.

The value of any given positive integer can be specified by simply listing all the nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a2 = 2, a3 = 1}.
The integer 18 is represented by a2 = 1, a3 = 2}.

The integer 91 is represented by {a7 = 2, a13 = 1}.

a = Hp”.l:‘ {-} e, HP'I]."'

S . . . . . _Ir_ll:]’ !;ICI’
Multiplication of two numbers is equivalent to adding the corresponding exponents. Given a
k=TIpr"
— 2
Define k = ab We know that the integer k can be expressed as the product of powers of primes: I el . It follows thatkp =

ap + bp for aIIpE P.
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k=12x18=(22x3)x(2x:g)=216



k2=2+1=3;k3=1+2=3

216223X33=8X27

What does it mean, in terms of the prime factors of a and b, to say thata divides b? Any integer of the form can be divided only by an

<

integer that is of a lesser or equal power of the same prime number, pl with | === n. Thus, we can say the following:

a = Hprr,_ b = HPF:-I,

1 _
Given J':'El , I'I:"=I Ifalb, thenap 5 bp then for allp.

a =12;b=236;12|36

120 2y336=2x7F
a2 =2=h
a3

:152:b3

Thus, the inequality ap === bp is satisfied for all prime numbers.

It is easy to determine the greatest common diviso! of two positive integers if we express each integer as the product of primes.

Bl Recall from that the greatest common divisor of integersa and b, expressed gcd(, b), is an integerc
that divides both a and b without remainder and that any divisor ofa and b is a divisor ofc.

300 =22X31x52

18 &

gcd(18:300) _ 1 .1 O0_ .

The following relationship always holds:
Itk = gcd(a,b) then kp = min(ap, bp) for all p

Determining the prime factors of a large number is no easy task, so the preceding relationship does not directly lead to a practical method
of calculating the greatest common divisor.

K==1 wexT
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[Page 238 (continued)]

8.2. Fermat's and Euler's Theorems

Two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem.
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Fermat's Theorem

[ This is sometimes referred to as Fermat's little theorem.

Fermat's theorem states the following: If p is prime and a is a positive integer not divisible byp, then

Equation 8-2

a’ " = 1{mod p)

Proof: Consider the set of positive integers less thanp:{1,2,..., p 1} and multiply each element bya, modulo p, to get the set X = {a mod p,
2amodp, . .. (0 1)amod p}. None of the elements of X is equal to zero becausep does not divide a. Furthermore no two of the integers inX

are equal. To see this, assume that ja == ka(mod p) where 1 == j < k == p 1. Because a is relatively prim to p, we can eliminate a

from both sides of the equation [see | resulting in:j == k(mode p). This last equality is impossible becausej and k are both
positive integers less than p. Therefore, we know that the ( 1) elements of X are all positive integers, with no two elements equal. We can
conclude the X consists of the set of integers {1,2,...,p 1} in some order. Multiplying the numbers in both sets and taking the result mog
yields

Bl Recall from that two numbers are relatively prime if they have no prime factors in common; that is,
their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime if their greatest
common divisor is 1.

ax2ax..x(p1l) = [ x2x...x P 1)](mode p)

PPV (5 1y(modp)

We can cancel the (p 1)! term because it is relatively prime top [see . This yields.

a=7,p=19

-2 = 11(mod 19)
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4=

7 = 121 = 7(mod 19)
8 —

7 2= 490 = 7(mod 19)

748 = 121 = 7(mod 19)

=718 718 2= 74 112 1mod 19)

An alternative form of Fermat's theorem is also useful: If p is prime and a is a positive integer, then

Equation 8-3

a’ = a(mod p)

Note that the first form of the theorem | requires thata be relatively prime top, but this form does not.

p=5a=3 ap = 35 =243 = 3(mod 5) = a(mod p)

p=512a=10 aP = 10° = 100000 = 10(mod 5) = 0(mod 5) = a(mod p)

[Page 240]

Euler's Totient Function

Before presenting Euler's theorem, we need to introduce an important quantity in number theory, referred to as Euler's totient function
and written f(n), defined as the number of positive integers less tham and relatively prime ton. By convention, f(1) = 1.

Determine f(37) and f(35).

Because 37 is prime, all of the positive integers from 1 through 36 are relatively prime to 37. Thu§37) = 36.
To determinef(35), we list all of the positive integers less than 35 that are relatively prime to it:
1,2,3,4,6,8,9, 11, 12, 13, 16, 17, 18,

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34.

There are 24 numbers on the list, sof(35) = 24.




lists the first 30 values off(n). The value f(1) is without meaning but is defined to have the value 1.



Table 8.2. Some Values of Euler's Totient Function f(n)

n f(n)
1 1
2 1
3 2
4 2
5 4
6 2
7 6
8 4
9 6
10 4
11 10
12 4
13 12
14 6
15 8
16 8
17 16
18 6
19 18
20 8
21 12
22 10
23 22
24 8
25 20
26 12
27 18
28 12
29 28
30 8

It should be clear that for a prime number p,



fl)=p1

Now suppose that we have two prime numbers p and g, with p ¢ g. Then we can show that forn = pq,

f(n) = f(pa) = f(p) x f(a) = (p 1) x @x 1)

To see that f(n) = f(p) x f(q), consider that the set of positive integers less tham is the set {1,..., (g 1)}. The integers in this set that are not
relatively  prime to n are the set {p,2 p,..., (q 1)p} and the set {g,2q,..., (p 1)q} Accordingly,

[Page 241]
f(n)=(pa 1) [@1) +(p 1)
=pq(p+qg)+1
=Px@l)

= f(p) x f(a)

f(21) =f(3) xf(7) = (3 1) x (7 1) =2 x 6 = 12

where the 12 integers are {1,2,4,5,8,10,11,13,16,17,19,20}

Euler's Theorem

Euler's theorem states that for every a and n that are relatively prime:

Equation 8-4

a®™ = 1(mod n)

a=3;n=10;f10)=4 af(n) _ 34= 81 = 1(mod 10) = 1 (modn)

a=2n=1L1(11) =10 a™ =210 = 1024 =5 1(mod 11) = 1 (modn)

Proof: is true if nis prime, because in that casef(n) = (n 1) and Fermat's theorem holds. However, it also holds for any
integer n. Recall thatf(n) is the number of positive integers less thann that are relatively prime ton. Consider the set of such integers,
labeled as follows:

R {X1, X2,..., Xf(n)}



S = {(ax1 modn), (ax2 mod n)

That is, each element xj of R is a unique positive integer less tham with gcd(xi, n) = 1. Now multiply each element bya, modulo n:
..... (axf(n) mod n)}

The set S is a permutation of R, by the following line of reasoning:
1

Because a is relatively prime ton and xj is relatively prime ton, axj must also be relatively prime ton. Thus, all the members of
S are integers that are less tham and that are relatively prime ton.

2. There are no duplicates inS. Refer to Ifaxi mod n = axj mod n thenxj = xj
Therefore,

din) b(n)
H{m:i mod n) = ]___[Jfr
i=1

i=1
Pl )

dh( i)
[[axi= ]~ (modn)
[=

i=1
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il ol 1)
ﬂ:h-, ") % H X;| = H X; E mod n :|
i=1 i=1
Hr,f:[rr]

=1 (modn)

of the theorem is also useful:

Equation 8-5

This is the same line of reasoning applied to the proof of Fermat's theorem. As is the case for Fermat's theorem, an alternative form

a®™ 7l = g(mod n)

but this form does not.

Again, similar to the case with Fermat's theorem, the first form of Euler's theorem [ requires thata be relatively prime ton,

NEXT B
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[Page 242 (continued)]

8.3. Testing for Primality

For many cryptographic algorithms, it is necessary to select one or more very large prime numbers at random. Thus we are faced with
the task of determining whether a given large number is prime. There is no simple yet efficient means of accomplishing this task.

In this section, we present one attractive and popular algorithm. You may be surprised to learn that this algorithm yields a number that is
not necessarily a prime. However, the algorithm can yield a number that is almost certainly a prime. This will be explained presently. We
also make reference to a deterministic algorithm for finding primes. The section closes with a discussion concerning the distribution of
primes.

B

Miller-Rabin Algorithm

6] Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller-Rabin test.

The algorithm due to Miller and Rabin [MILL75, RABI8(] is typically used to test a large number for primality. Before explaining the

algorithm, we need some background. First, any positive odd integer n === 3 can be expressed as follows:

nlzé(qwithk>0,q0dd

To see this, note that (n 1) is an even integer. Then, divide f 1) by 2 until the result is an odd numbeiq, for a total ofk divisions. Ifn is
expressed as a binary number, then the result is achieved by shifting the number to the right until the rightmost digit is a 1, for a total ofk
shifts. We now develop two properties of prime numbers that we will need.

Two Properties of Prime Numbers

The first property is stated as follows: Ifp is prime and a is a positive integer less thanp, then a2 modp =1 if and only if eitheramodp = 1
or amod p= 1 mode p = p 1. By the rules of modular arithmetic (@ mode p) (a mode p) = a2 mod p. Thus if eitheramode p=1 oramodp =

1, then a2 modp = 1. Conversely, if a2 modp = 1, then (amod p)2 =1, which is true only foramodp =1 oramodp = 1.
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The second property is stated as follows: Letp be a prime number greater than 2. We can then writep 1 = £<q, withk > 0q odd. Leta be
any integer in the range 1 < a<p 1. Then one of the two following conditions is true:

1 aq is congruent to 1 modulop. That is, aq modp = 1, or equivalently, aq == 1 (modp).

k-1
aq, azq, a4q,.. 2

2. One of the numbers L a is congruent to 1 modulop. That is, there is some numberj in the range (1 == j ==
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Zj'lq

i pp—
k) such that a modp =1 modp = p 1, or equivalently, a 1= 1 (modp).

Proof: Fermat's theorem states thatanl = 1 (modn) if nis prime. We havep 1 = }q. Thus, we know thatap1 modp =

K
a2 q modp = 1. Thus, if we look at the sequence of numbers

Equation 8-6

4y an

=1 [
a’mod p,a* " mod p,a* mod p,...,a°> “modp,a”9modp

we know that the last number in the list has value 1. Further, each number in the list is the square of the previous number. Therefore,
one of the following possibilities must be true:

1. The first number on the list, and therefore all subsequent numbers on the list, equals 1.

2. Some number on the list does not equal 1, but its square mod p does equal 1. By virtue of the first property of prime numbers
defined above, we know that the only number that satisfies this condition p 1 is So, in this case, the list contains an element
equaltopl.

This completes the proof.

Details of the Algorithm

These considerations lead to the conclusion that if nis prime, then either the first element in the list of residues, or remainders,a(q, azq,...,

k-1 k
a2 q’ a2 q) modulo n equals 1, or some element in the list equalsif 1); otherwise n is composite (i.e., not a prime). On the other hand, if
the condition is met, that does not necessarily mean that n is prime. For example, ifn = 2047 = 23 x 89, thenn 1 = 2 x 1023. Compulting,

21023 mod 2047 = 1, so that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure TEST takes a candidate integer n as input and returns
the result composite if n is definitely not a prime, and the resulinconclusive if n may or may not be a prime.

TEST (n)
1. Find integers k, g, with k > 0, g odd, so that (n 1
k

=270);
2. Select arandom integera, 1<a<n 1;
3. ifa9mod n=1then return(“inconclusive");
4. forj=0tok 1do

jol ——

5. ifa2 modn==n 1then return(“inconclusive");
6. return("composite");
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Let us apply the test to the prime numbem = 29. We have (h 1) = 28 = 22(7) = 2kq. First, let us trya = 10. We compute

107 mod 29 = 17, which is neither 1 nor 28, so we continue the test. The next calculation finds that (ZDZ mod 29 = 28,
and the test returns inconclusive (i.e., 29 may be prime). Let's try again witha = 2. We have the following calculations:

27 mod 29 = 12;214 mod 29 = 28; and the test again returnsinconclusive. If we perform the test for all integersa in the
range 1 through 28, we get the same inconclusive result, which is compatible with n being a prime number.

Now let us apply the test to the composite numbern =13 x 17 = 221. Then (0 1) = 220 = 22(55) = 2kq. Letustrya=5.

Then we have 555 mod 221 = 112, which is neither 1 nor 220; (%5)2 mod 221 = 168. Because we have used all values
of j (i.e.,j =0 and = 1) in line 4 of the TEST algorithm, the test returncomposite, indicating that 221 is definitely a

composite number. But suppose we had selected a = 21. Then we have 2155 mod 221 = 200; (2?5)2 mod 221 = 220;
and the test returns inconclusive, indicating that 221 may be prime. In fact, of the 218 integers from 2 through 219,
four of these will return an inconclusive result, namely 21, 47, 174, and 200.

Repeated Use of the Miller-Rabin Algorithm

How cap we use the Miller-Rabin algorithm to determine with a high degree of confidence whether or not an integer is prime? It can be
shown [KNUT9{] that given an odd numbern that is not prime and a randomly chosen integer,a with 1 <a < n 1, the probability that TEST
will returninconclusive (i.e., fail to detect thatn is not prime) is less than 1/4. Thus, ift different values of a are chosen, the probability that

all of them will pass TEST (return inconclusive) for nis less than (1/4)t For example, fort = 10, the probability that a nonprime number will

pass all ten tests is less than 106. Thus, for a sufficiently large value oft, we can be confident thatn is prime if Miller's test always returns
inconclusive.

This gives us a basis for determining whether an odd integer n is prime with a reasonable degree of confidence. The procedure is as
follows: Repeatedly invoke TEST (n) using randomly chosen values fora. If, at any point, TEST returnscomposite, thenn is determined
to be nonprime. If TEST continues to return inconclusive fort tests, for a sufficiently large value oft, assume thatn is prime.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the primality of very large numbers. All of the algorithms in use, including
the most popular (Miller-Rabin), produced a probabilistic result. In 2002, Agrawal, Kayal, and Saxena , developed a relatively
simple deterministic algorithm that efficiently determines whether a given large number is a prime. The algorithm, known as the AKS
algorithm, does not appear to be as efficient as the Miller-Rabin algorithm. Thus far, it has not supplanted this older, probabilistic
technique

[Page 245]

Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a prime number is found using the Miller-Rabin test, or any other



test for primality. A result from number theory, known as the prime number theorem, states that the primes nearn are spaced on the
average one every (In n) integers. Thus, on average, one would have to test on the order of In) integers before a prime is found.
Because all even integers can be immediately rejected, the correct figure is 0.5 In(n). For example, if a prime on the order of magnitude

of 2200 were sought, then about 0.5 In(f"oo) = 69 trials would be needed to find a prime. However, this figure is just an average. In some
places along the number line, primes are closely packed, and in other places there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063 are both prime. On the other hand, 1001!
+2,1001! + 3,..., 1001! + 1000, 1001! + 1001 is a sequence of 1000 consecutive composite integers.

E=a wExT
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[Page 245 (continued)]

8.4. The Chinese Remainder Theorem

One of the most useful results of number theory is the Chinese remainder theorem (CRT). In essence, the CRT says it is possible to
reconstruct integers in a certain range from their residues modulo a set of pairwise relatively prime moduli.

[ The CRT is so called because it is believed to have been discovered by the Chinese mathematician Sun-Tsu in
around 100 A.D.

The 10 integers in Z10, that is the integers 0 through 9, can be reconstructed from their two residues modulo 2 and 5
(the relatively prime factors of 10). Say the known residues of a decimal digitx arer2 = 0 andrs = 3; that is, x mod 2 =0
and x mod 5 = 3. Therefore,x is an even integer in Z10 whose remainder, on division by 5, is 3. The unique solution isx =
8.

The CRT can be stated in several ways. We present here a formulation that is most useful from the point of view of this text. An alternative
formulation is explored in Problem 8.17. Let

k
M = H”If

i=1

where the mj are pairwise relatively prime; that is, gcdfii, mj) = 1 for 1 5 i] 5 k, andi ij. We can represent any integerA in ZNI by a
k-tuple whose elements are in Znj using the following correspondence:

Equation 8-7

A l:":'r]ﬁﬂz?"'?ﬂk]

where AE ZM, ai E Zmi and aj = A mod mij for 1 5 i 5 k. The CRT makes two assertions.
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1.  The mapping of is a one-to-one correspondence (called abijection) between ZM and the Cartesian product

Zm1XZm2X ... XZmk. That is, for every integerA such that O == A < M there is a uniquek-tuple (a1, a2,..., ak) with 0 == aj <
mj that represents it, and for every suchk-tuple (a1, a2,..., ak) there is a unique integerAin Z\.

2. Operations performed on the elements of Z\ can be equivalently performed on the correspondingk-tuples by performing the
operation independently in each coordinate position in the appropriate system.

Let us demonstrate the first assertion. The transformation fromA to (ag, a1,..., ak) is obviously unique; that is, eachaj is uniquely

calculated as aj = A mod mj. Computing A from (a1, ai,..., ak) can be done as follows. LetMj = M/mj for 1 i: i ':—: k. Note thatMj = m1 x

M2 X ... XMj-1 X Mj+1 X ... X Mk so thatMj == 0(mod mj) for all j ii. Then let

Equation 8-8

¢ =M X (M 'modm;) forl=i=k

By the definition of Mj it is relatively prime tomj and therefore has a unique multiplicative inverse modmj So is well defined
and produces a unique value cj. We can now compute:

Equation 8-9

k
A= Ea,.—:!- (mod M)

i=1

<. <

To show that the value of A produced by is correct, we must show thataj = A mod mj for 1 === | == k. Note thatc;j = M;j

= O(mod mj) if j ii and thatcij = 1(mod mij). It follows thataj = A mod mij.

The second assertion of the CRT, concerning arithmetic operations, follows from the rules for modular arithmetic. That is, the second
assertion can be stated as follows: If

A |:ﬂ|.,ﬁg.....,ﬂk}
B «—— I:bhb;_'-.....?bkj

then

(A+ Bmod M «—— ((a; + by mod my,.....(a; + b)) mod my)
(A—Bmod M «<— ((a; — by) mod my,.....(a, — b;) mod my)
(A X Bimod M «—— ((a; X by) mod my,.....[a; X b)) mod m;)



One of the useful features of the Chinese remainder theorem is that it provides a way to manipulate (potentially very large) numbers mod
M in terms of tuples of smaller numbers. This can be useful whenM is 150 digits or more. However, note that it is necessary to know
beforehand the factorization of M.
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To represent 973 mod 1813 as a pair of numbers mod 37 and 49, defi
m1 =237
m2 =49
M =1813

A=973

1
We also have M1 = 49 and M2 = 37. Using the extended Euclidean algorithm, we compute Jw 1l =34mod m1 and

by M7
el = 4 modm2. (Note that we only need to compute eachMj and each I once.) Taking residues modulo 37
and 49, our representation of 973 is (11, 42), because 973 mod 37 = 11 and 973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)? First we compute (678) *~* (678 mod 37, 678
mod 49) = (12, 41). Then we add the tuples element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34). To
verify that this has the correct effect, we compute

| 1
(23,34) T alMllw 1+ om0 JME mod M
=[(23)(49)(34) + (34)(37)(4)] mod 1813
= 43350 mod 1813

=1651

|
and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in the above derivation, ’w I isthe

multiplicative inverse of M1 modulo m1, and { 2 is the multiplicative inverse of M2 modulo m2.

Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34) by 73 and reduce to get (23 x 73 mod 37, 34 x
73 mod 49) = (14,32). It is easily verified that

(32,14) = [(14)(49)(34) + (32)(37)(4)] mod 1813
=865

= 1651 x 73 mod 1813

8] This example was provided by Professor Ken Calvert of Georgia Tech.
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[Page 247 (continued)]

8.5. Discrete Logarithms

Discrete logarithms are fundamental to a number of public-key algorithms, including Diffie-Hellman key exchange and the digital signature
algorithm (DSA). This sectjon provides @ brief overview of discrete logarithms. For the interested reader, more detailed developments of
this topic can be found in [ORE67] and LEVEQ(].
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The Powers of an Integer, Modulo n

Recall from Euler's theorem that, for everya and n that are relatively prime:

af(n) = 1(mod n)

where f(n), Euler's totient function, is the number of positive integers less tham and relatively prime ton. Now consider the more general
expression:

Equation 8-10

a” = 1{mod n)

ere is at least one integem that satisfies Equation (8.10), namely, m = f(n). The least positive

holds is referred to in several ways:

If aand n are relativel
exponent m for which

prime. then th
® the order of a (mod n)

® ihe exponent to which a belongs (mod n)

® ihe length of the period generated by a

To see this last point, consider the powers of 7, modulo 19:

A = 7(mod 19)

72 =49=2x19+11 = 11(mod 19)




B =343-18x19+ 1= 1(mod 19)
A =2401=126x19+7= 7(mod 19)

2 =16807=884x19 +11= 11(mod 19)

There is no point in continuing because the sequence is repeating. This can be proven by noting that 73 == 1(mod 19)
oKk o 7(mod 19), and hence any two powers of 7 whose exponents differ by 3 (or a multiple of
3) are congruent to each other (mod 19). In other words, the sequence is periodic, and the length of the period is the

and therefore 7

smallest positive exponent m such that 7' == 1(mod 19).

shows all the powers of a, modulo 19 for all positivea < 19. The length of the sequence for each base value is indicated by

shading. Note the following:
1. Allsequences end in 1. This is consistent with the reasoning of the preceding few paragraphs.
2.

3.

nonzero integers modulo 19. Each such integer is called a primitive root of the modulus 19.
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Table 8.3. Powers of Integers, Modulo 19

lView full size image|

The length of a sequence divides f(19) = 18. That is, an integral number of sequences occur in each row of the table.

Some of the sequences are of length 18. In this case, it is said that the base integer a generates (via powers) the set of



a a? & o' dF At AT b AT oW g At g aM g g 7

_.T._‘I | I 1 1 I 1 1 1 1 1 | 1 | | | 1
1 4 8 1t 13 T 4 L] ] 17 1% 11 3 [ i2 141 1
3 b & 5 15 7 2 [ I8 3 10 11 14 12 17 13 |
4 16 T 17 1 & 5 1 4 ] 7 G 17 1} 3 5 i
3 (] 1} 17 9 T [ 4 1 5 f ] 17 L 7 it 4 i
B 17 T 4 5 11 9 1] 1 i 17 7 4 5 1} ¥ I 1
7 11 | I 7 1 | T 1 1 T I | 7 11 | 7 11 |
B T 18 14 12 | | ] T I8 11 12 1 ] 7 18 11 12 1
9 5 7 6 1 1N 4 17 1] 0 5 7 & 16 N 4 17 1
I 5 12 [ ] 11 15 17 I8 a9 14 T 13 16 8 4 2 |
Il ¥ I I 11 7 | [} T 1 11 7 1 I 7 I 11 7 1
1z 11 18 & | ] 12 11 I8 T 1 12 11 (3 7 1 |
1% 17 14 11 [l ([ % f 2 7 15 5 H L 3 1
14 [\ K i § 1 T 3 & 15 5 13 11 2 i 12 16 15 1
15 1 12 L s I 13 5 (] & i 7 (1] 17 K [ 14 1
[ % I 5 Ll T 17 1] 1 I ] 11 5 L r 17 f 1
17 4 11 & i T 5 0 1 17 4 11 ]} T 5 i} 1
i& 1 J 1= 1 15 | [} 1 Is 1 15 1 ].3 1 1.3 1 18 1
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More generally,
itis referred to as a

1t the highest possible exponent to which a number can belong (moa) is f(n). If a number is of this order,

of n. The importance of this notion is that ifa is a primitive root of n, then its powers

a, a2,..., af(n)

are distinct (mod n) and are all relatively prime ton. In particular, for a prime numberp, if a is a primitive root of p, then

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14, and 15.

Not all integers have primitive roots. In fact, the only integers with primitive roots are those of the form 2, 4, pa, and 2% where p is any odd
prime and a is a positive integer. The proof is not simple but can be found in many number theory books, includin

Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of exponentiation. An analogous function exists for modular
arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a number is defined to be the power to which some positive
base (except 1) must be raised in order to equal the number. That is, for base x and for a valuey:

_ Jogx(y)

The properties of logarithms include the following:



logx(1) =0

logx(x) =1

Equation 8-11

log,(yz) = log,(y) + log,(z)

Equation 8-12

log,(¥") = r X log,(y)

Consider a primitive root a for some prime numberp (the argument can be developed for nonprimes as well). Then we know that the
powers of a from 1 through (p 1) produce each integer from 1 through p 1) exactly once. We also know that any integerb satisfies

b = r(mod p) for somer, where 0 == r == (p 1)

by the definition of modular arithmetic. It follows that for any integer b and a primitive roota of prime number p, we can find a unique
exponent i such that

b = ai(mod p) where 0 i: i ':—: (p1)
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This exponenti is referred to as the discrete logarithm of the number b for the basea (mod p). We denote this value as dlogi,p(b).@

ol Many texts refer to the discrete logarithm as theindex. There is no generally agreed notation for this concept,
much less an agreed name.

Note the following:
Equation 8-13

dlog, (1) = 0, because a"modp = I mod p = 1

Equation 8-14

dlog,,(a) = 1, because a'modp = a



Here is an example using a nonprime modulus, n = 9. Here f(n) = 6 anda = 2 is a primitive root. We compute the various
powers of a and find

-1 * = 7(mod 9)
D) 2° == 5(mod 9)
P-4 2= 1(mod 9)
B-3g

This gives us the following table of the numbers with given discrete logarithms (mod 9) for the roca = 2:

Logarithm 0 1 2 3 4 5

Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we rearrange the table:

Number 1 2 4 5 7 8

Logarithm 0 1 2 5 4 3

Now consider

X _ adloga,p(x) _ adloga,p(y)

mod p y = mod p

xy o diogap(y) og

Using the rules of modular multiplication,

xymod p = [(x mod p) (v mod p)] mod p

a19%.(Y) mod p = a9 (%) ad p a2 %) mod p mod p



L % FEA S LA |

1] ok . (
il ifd|i15,_,.[-ll dlog,, ,(¥) mod P

But now consider Euler's theorem, which states that, for every a and n that are relatively prime:

af(n) = 1(mod n)
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Any positive integerz can be expressed in the formz = g + kf(n), with 0 == q < f(n). Therefore, by Euler's theorem,

alZ = aq(mod n)ifz = g mod f(n)
Applying this to the foregoing equality, we have
dloga,p(xy) == [dloga,p(x) + dloga,p(y)] (mod f(p))

and generalizing,

r =
dloga,p(y’) == [r x dloga.p(y)] (mod f(n))
This demonstrates the analogy between true logarithms and discrete logarithms.

Keep in mind that unique discrete logarithms mod m to some basea exist only ifa is a primitive root of m.

, which is directly derived from, shows the sets of discrete logarithms that can be defined for modulus 19.

Table 8.4. Tables of Discrete Logarithms, Modulo 19
(This item is displayed on page 252 in the print version)
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Calculation of Discrete Logarithms

Consider the equation

y=ngodp

Given g, X, and p, it is a straightforward matter to calculatey. At the worst, we must perfornx repeated multiplications, and algorithms exist
for achieving greater efficiency (see Chapter 9).

However, giveny, g, andp, it is, in general, very difficult to calculatex (take the discrete logarithm). The difficulty seems to be on the same
order of magnitude as that of factoring primes required for RSA. At the {i this writing, the asymptotically fastest known algorithm for
taking discrete logarithms modulo a prime number is on the order of dBETHQ :

(i p)3nan p)?"3)

which is not feasible for large primes.

k=1 wexT
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8.6. Recommended Reading and Web Sites

There are many basic texts on the subject of number the provide far more detail than most readers of this book will desire. An
elementary but nevertheless useful short intro jonis || For the reader interested in a more in-depth treatment, two excellent
textbooks on the subject are [KUMA9{] and [ROSEOY]|. [LEVE9(] is a readable and detailed account as well. All of these books include

problems with solutions, enhancing their value for self-study.

For readers willing to commit the time, perhaps the best way to get a solid grasp of the fundamentals of number theory is to work their
way through [BURN9Y], which consists solely of a series of exercises with solutions that lead the student step by step through the
concepts of number theory; working through all of the exercises is equivalent to completing an undergraduate course in number theory.
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BURN97 Burn, R. A Pathway to Number Theory. Cambridge, England: Cambridge University Press, 1997.

UMA94 Kumanduri, R., and Romero, C.Number Theory with Computer Applications. Upper Saddle River, NJ:
Prentice Hall, 1998.

EVE9( Leveque, W. Elementary Theory of Numbers. New York: Dover, 1990.
Ore, O.Invitation to Number Theory. Washington, DC: The Mathematical Association of America, 1967,

ROSEOQY Rosen, K.Elementary Number Theory and its Applications Reading, MA: Addison-Wesley, 2000.

§ Recommended Web Site

® The Prime Pages: Prime number research, records, and resources

" prey wEXT
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8.7. Key Terms, Review Questions, and Problems

Key Terms
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Review Questions

8.1 What is a prime number?
8.2 What is the meaning of the expression a divides b?

8.3 What is Euler's totient function?



8.4 The Miller-Rabin test can determine if a number is not prime but cannot determine if a number is prime. How
can such an algorithm be used to test for primality?

8.5 What is a primitive root of a number?

8.6 What is the difference between an index and a discrete logarithm?

Problems

8.1 The purpose of this problem is to determine how many prime numbers there are. Suppose there are a total
of n prime numbers, and we list these in order:

pL1=2<p2=3<p3=5<..<pn

a. Define X =1 +p1p2...pn. That is, X is equal to one plus the product of all the primes. Can we find a
prime number pm that divides X?

b. What can you say aboutm?

c. Deduce that the total number of primes cannot be finite.

d. Show thatpn+1 i: 1 +p1p2...pn.
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8.2 The purpose of this problem is to demonstrate that the probability that two random numbers are relatively
prime is about 0.6.

a. LetP =Pr[gcd(a,b) = 1]. Show that Pr[gcd(a,b) = d] = P/d2 Hint: Consider

ab
d’

the quantity gcd

b. The sum of the result of part (a) over all possible values of dis 1. That is:

D Pr{ged(a, b) = d] =1

d=1 . Use this equality to determine the value of PHint:
Use

L=

adfly w
ZF™%

the identity



8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

Why is ged(n,n +1) = 1 for two consecutive integersn andn + 1?

Using Fermat's theorem, find 3201 mod 11.

Use Fermat's Theorem to find a numbera between 0 and 72 witha congruent to 9794 modulo 73.

Use Fermat's Theorem to find a number x between 0 and 28 Withx85 congruent to 6 modulo 29. (You should
not need to use any brute force searching.)

Use Euler's Theorem to find a number a between 0 and 9 such thata is congruent to 71000 modulo 10. (Note

that this is the same as the last digit of the decimal expansion of 71000.)

Use Euler's Theorem to find a number x between 0 and 28 withx85 congruent to 6 modulo 35. (You should
not need to use any brute force searching.)

Notice in that f(n) is even forn > 2. This is true for alln > 2. Give a concise argument why this is so.

Prove the following: Ifp is prime, thenf(pl) = pI p'l. Hint: What numbers have a factor in common Withpl?

It can be shown (see any book on number theory) that if gcd(m, n) = 1 thenf(mn) = f(m)f(n). Using this
property and the property developed in the preceding problem and the property that f(p) = p 1 forp prime, it is
straightforward to determine the value of f(n) for any n. Determine the following:

a  f(41)
b. f(27)
c. f(231)
d. f(440)

It can also be shown that for arbitrary positive integem,f(a) is given by:

f

o(a) = [I|ps'(pi — 1)

f=1

£ i3 i,
1 P2 - . Demonstrate this result.

where a is given by namely: a=p

Consider the function: f(n) = number of elements in the set fa: 0 == a < n and gcd@,n) = 1}. What is this
function?

Although ancient Chinese mathematicians did good work coming up with their remainder theorem, they did

not always get it right. They had a test for primality. The test said that n is prime if and only ifn divides (2n 2).

a. Give an example that satisfies the condition using an odd prime.



8.15

8.16

8.17

8.18

8.19

8.20

8.21

b. The condition is obviously true for n = 2. Prove that the condition is true ifn is an odd prime
(proving the if condition)

c. Give an example of an odd n that is not prime and that does not satisfy the condition. You can do
this with nonprime numbers up to a very large value. This misled the Chinese mathematicians
into thinking that if the condition is true then nis prime.

d. Unfortunately, the ancient Chinese never tried n = 341, which is nonprime (341 = 11 x 31) and yet
341 divides 2341 2 with out remainder. Demonstrate that 341 == 2 (mod 341) (disproving the

only if condition). Hint: It is not necessary to calculate 2341; play around with the congruences
instead.
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Show that if nis an odd composite integer, then the Miller-Rabin test will returninconclusive fora= 1 anda =
(n1).

If nis composite and passes the Miller-Rabin test for the basea, thenn is called a strong pseudoprime to the
base a. Show that 2047 is a strong pseudoprime to the base 2.
A common formulation of the Chinese remainder theorem (CRT) is as follows: Letm3,..., mk be integers that

are pairwise relatively prime for 1 E i]j E k, andi ij. Define M to be the product of all the mj's. Let
ai,..., ak be integers. Then the set of congruences:

X = a1(mod m1)

a2(mod m2)

X = ak(mod mk)

has a unique solution moduloM. Show that the theorem stated in this form is true.

The example used by Sun-Tsu to illustrate the CRT was
x == 2(mod 3); x == 3(mod 5); x == 2(mod 7)

Solve for x.

Six professors begin courses on Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday,
respectively, and announce their intentions of lecturing at intervals of 2, 3, 4, 1, 6, and 5 days, respectively.
The regulations of the university forbid Sunday lectures (so that a Sunday lecture must be omitted). When
first will all six professors find themselves compelled to omit a lecture? Hint: Use the CRT.

Find all primitive roots of 25.

Given 2 as a primitive root of 29, construct a table of discrete logarithms, and use it to solve the following
congruences:

2=

a. 17x == 10(mod 29)



b. ¥ 4x 16 == o(mod 29)

1=

c. X = 17(mod 29)

Programming Problems

8.22 Write a computer program that implements fast exponentiation (successive squaring) modulon.

8.23 Write a computer program that implements the Miller-Rabin algorithm for a user-specified n. The program
should allow the user two choices: (1) specify a possible witness a to test using the Witness procedure, or (2)
specify a number s of random witnesses for the Miller-Rabin test to check.

E=a wExT
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Every Egyptian received two names, which were known respectively as the true name and the good name, or the
great name and the little name; and while the good or little name was made public, the true or great name appears
to have been carefully concealed.

The Golden Bough, Sir James George Frazer

Key Points

® Asymmetric encryption is a form of cryptosystem in which encryption and decryption are performed using
the different keysone a public key and one a private key. It is also known as public-key encryption.

° Asymmetric encryption transforms plaintext into ciphertext using a one of two keys and an encryption
algorithm. Using the paired key and a decryption algorithm, the plaintext is recovered from the ciphertext.

® Asymmetric encryption can be used for confidentiality, authentication, or both.

® The most widely used public-key cryptosystem is RSA. The difficulty of attacking RSA is based on the
difficulty of finding the prime factors of a composite number.

The development of public-key cryptography is the greatest and perhaps the only true revolution in the entire history of cryptography.
From its earliest beginnings to modern times, virtually all cryptographic systems have been based on the elementary tools of substitution
and permutation. After millennia of working with algorithms that could essentially be calculated by hand, a major advance in symmetric
cryptography occurred with the development of the rotor encryption/decryption machine. The electromechanical rotor enabled the
development of fiendishly complex cipher systems. With the availability of computers, even more complex systems were devised, the
most prominent of which was the Lucifer effort at IBM that culminated in the Data Encryption Standard (DES). But both rotor machines
and DES, although representing significant advances, still relied on the bread-and-butter tools of substitution and permutation.

Public-key cryptography provides a radical departure from all that has gone before. For one thing, public-key algorithms are based on
mathematical functions rather than on substitution and permutation. More important, public-key cryptography is asymmetric, involving the
use of two separate keys, in contrast to symmetric encryption, which uses only one key. The use of two keys has profound
consequences in the areas of confidentiality, key distribution, and authentication, as we shall see.

Before proceeding, we should mention several common misconceptions concerning public-key encryption. One such misconception is
that public-key encryption is more secure from cryptanalysis than is symmetric encryption. In fact, the security of ~any encryption
scheme depends on the length of the key and the computational work involved in breaking a cipher. There is nothing in principle about
either symmetric or public-key encryption that makes one superior to another from the point of view of resisting cryptanalysis.
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A second misconception is that public-key encryption is a general-purpose technique that has made symmetric encryption obsolete. On
the contrary, because of the computational overhead of current public-key encryption schemes, there seems no foreseeable likelihood
that symmetric encryption will be abandoned. As one of the inventors of public-key encryption has put it , "the restriction of
public-key cryptography to key management and signature applications is almost universally accepted.”

Finally, there is a feeling that key distribution is trivial when using public-key encryption, compared to the rather cumbersome
handshaking involved with key distribution centers for symmetric encryption. In fact, some form of protocol is needed, generally involving
a central agent, rocedures involved are not simpler nor any more efficient than those required for symmetric encryption (e.g.,
see analysis in [} EED7EE).




This chapter and the next provide an overview of public-key cryptography. First, we look at its conceptual framework. Interestingly, the
concept for this technique was developed and published before it was shown to be practical to adopt it. Next, we examine the RSA

algorithm, which is the most i
Further topics are explored in

nportant en

hapter 1

cryption/decryption algorithm that has been shown to be feasible for public-key encryption.
and Appendix F.

Much of the theory of public-key cryptosystems is based on number theory. If one is prepared to accept the results given in this chapter,
an understanding of number theory is not str,ﬂ_upﬁsary. However, to gain a full appreciation of public-key algorithms, some
Chapter

understanding of number theory is required. |

provides the necessary background in number theory.

NEXT B
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9.1. Principles of Public-Key Cryptosystems

The concept of public-key cryptography evolved from an attempt to attack two of the most diffjcult problems associated with symmetric
encryption. The first problem is that of key distribution, which was examined in some detail in Chapter 7.

As we have seen, key distribution under symmetric encryption requires either (1) that two communicants already share a key, which
somehow has been distributed to them; or (2) the use of a key distribution center. Whitfield Diffie, one of the discoverers of public-key
encryption (along with Martin Hellman, both at Stanford University at the time), reasoned that this second requirement negated the very
essence of cryptography: the ability to maintain total secrecy over your own communication. As Diffie put it , "what good would it
do after all to develop impenetrable cryptosystems, if their users were forced to share their keys with a KDC that could be compromised by
either burglary or subpoena?”

The second problem that Diffie pondered, and one that was apparently unrelated to the first was that of "digital signatures.” If the use of
cryptography was to become widespread, not just in military situations but for commercial and private purposes, then electronic
messages and documents would need the equivalent of signatures used in paper documents. That is, could a method be devised that
would stipulate, to the satisfaction of all parties, that a digital message had been sent by a partij: f[ Effﬁ n? This is a somewhat broader
requirement than that of authentication, and its characteristics and ramifications are explored in [Chapter 13.
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Diffie and Hellman achieved an astounding breakthrough in 1976 [DIFF763 H] by coming up with a method t addressed both problems

and that was radically different from all previous approaches to cryptography, going back over four millennia. L

[ piffie and Hellman firstpublicly introduced the concepts of public-key cryptography in 1976. However, this is not

the true beginning. Admiral Bobby Inman, while director of the National Security Agency (NSA), claimed that
public-key cryptography had been discovered at NSA in the mid-1960s The firstdocumented introduction
of these concepts came in 1970, from the Communications-Electronics Security Group, Britain's counterpart to
NSA, in a classified report s Ellis [. Ellis referred to the technique as nonsecret encryption and

|

describes the discovery in [ELLI9Y].

In the next subsection, we look at the overall framework for public-key cryptography. Then we examine the requirements for the
encryption/decryption algorithm that is at the heart of the scheme.

Public-Key Cryptosystems

Asymmetric algorithms rely on one key for encryption and a different but related key for decryption. These algorithms have the following
important characteristic:

® itis computationally infeasible to determine the decryption key given only knowledge of the cryptographic algorithm and the
encryption key.

In addition, some algorithms, such as RSA, also exhibit the following characteristic:


file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

® Fither of the two related keys can be used for encryption, with the other used for decryption.
A public-key encryption scheme has six ingredients ; compare With:

® pjaintext: This is the readable message or data that is fed into the algorithm as input.
® Encryption algorithm: The encryption algorithm performs various transformations on the plaintext.

® pyblic and private keys: This is a pair of keys that have been selected so that if one is used for encryption, the other is used
for decryption. The exact transformations performed by the algorithm depend on the public or private key that is provided as
input.

® Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and the key. For a given message,
two different keys will produce two different ciphertexts.

® Decryption algorithm: This algorithm accepts the ciphertext and the matching key and produces the original plaintext.
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Figure 9.1. Public-Key Cryptography

lView full size image|
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1. Each user generates a pair of keys to be used for the encryption and decryption of messages.




2. Each user place, e two keys in a public register or other accessible file. This is the public key. The companion key is
kept private. As Figure 9.le[suggests, each user maintains a collection of public keys obtained from others.
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3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using Alice's public key.
4. When Alice receives the message, she decrypts it using her private key. No other recipient can decrypt the message because

only Alice knows Alice's private key.

With this approach, all participants have access to public keys, and private keys are generated locally by each participant and therefore
need never be distributed. As long as a user's private key remains protected and secret, incoming communication is secure. At any time, a
system can change its private key and publish the companion public key to replace its old public key.

summarizes some of the important aspects of symmetric and public-key encryption. To discriminate between the_two, we refer to
the key used in Wmetric encryption as a secret key. The two keys used for asymmetric encryption are referred to as thj and

the Invariably, the private key is kept secret, but it is referred to as a private key rather than a secret key to avoid confusion
with symmetric encryption.

2l The following notation is used consistently throughout. A secret key is represented byKm, where m is some
modifier; for example, Ka is a secret key owned by user A. A public key is represented biPUga, for user A, and the
corresponding private key is PRa, Encryption of plaintext X can be performed with a secret key, a public key, or a
private key, denoted by E(Ka, X), E(PUa, X), and E(PRa, X), respectively. Similarly, decryption of ciphertextC can be
performed with a secret key, a public key, or a private key, denoted by D(Ka, X), D(PUa, X), and DPRa, X),
respectively.

Table 9.1. Conventional and Public-Key Encryption

Conventional Encryption Public-Key Encryption
Needed to Work: Needed to Work:
1. The same algorithm with the same key is used for 1. One algorithm is used for encryption and decryption
encryption and decryption. with a pair of keys, one for encryption and one for
decryption.

2. The sender and receiver must share the algorithm and
the key. 2. The sender and receiver must each have one of the
matched pair of keys (not the same one).

Needed for Security: Needed for Security:
1. The key must be kept secret. 1. One of the two keys must be kept secret.
2. It must be impossible or at least impractical to decipher 2. It must be impossible or at least impractical to
a message if no other information is available. decipher a message if no other information is
available.

3. Knowledge of the algorithm plus samples of ciphertext
must be insufficient to determine the key. 3. Knowledge of the algorithm plus one of the keys plus
samples of ciphertext must be insufficient to determine
the other key.




Let us take a closer look at the essential elements of a public-key encryption scheme, using (compare with ). There is
some source A that produces a message in plaintext, X =[X1, X2,..., XM,]. The M elements of X are letters in some finite alphabet. The
message is intended for destination B. B generates a related pair of keys: a public key, PUp, and a private key,PUp. PUp is known only to
B, whereas PUp is publicly available and therefore accessible by A.
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Figure 9.2. Public-Key Cryptosystem: Secrecy
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With the message X and the encryption keyPUp as input, A forms the ciphertextY = [Y1, Y2,..., YNI:
Y = E(PUp, X)

The intended receiver, in possession of the matching private key, is able to invert the transformation:
X =D(PRp, Y)

An adversary, observing Y and having access toPUp but not having access toPRp or X, must attempt to recover X and/or PRp. It is
assumed that the adversary does have knowledge of the encryption (E) and decryption (D) algorithms. If the adversary is interested only
e

in this particular message, then the focus of effort is to recover X, by generating a plaintext estimate -'3{ Often, however, the adversary is
interested in being able to read future messages as well, in which case an attempt is made to recover PRp by generating an estimate

PR,



We mentioned earlier that either of the two related keys can be used for encryption, with the other being used for decryption. This enable
her rent cryptographic scheme to be implemented. Whereas the scheme illustrated in Eigure 9.4 provides confidentiality,
and show the use of public-key encryption to provide authentication:
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Y = E(PRa, X)
Y = E(PUa, Y)
Figure 9.3. Public-Key Cryptosystem: Authentication
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In this case, A prepares a message to B and encrypts it using A's private key before transmitting it. B can decrypt the message using A's
public key. Because the message was encrypted using A's private key, only A could have prepared the message. Therefore, the entire
encrypted message serves as a figital signaturg. In addition, it is impossible to alter the message without access to A's private key, so the
message is authenticated both in terms of source and in terms of data integrity.

In the preceding scheme, the entire message is encrypted, which, although validating both author and contents, requires a great deal of
storage. Each document must be kept in plaintext to be used for practical purposes. A copy also must be stored in ciphertext so that the
origin and contents can be verified in case of a dispute. A more efficient way of achieving the same results is to encrypt a small block of
bits that is a function of the document. Such a block, called an authenticator, must have the property that it is infeasible to change the
document without changing the authenticato he authenticator is encrypted with the sender's private key, it serves as a signature that
verifies origin, content, and sequencing. examines this technique in detail.

It is important to emphasize that the encryption process depicted in and@ does not provide confidentiality. That is, the



message being sent is safe from alteration but not from eavesdropping. This is obvious in the case of a signature based on g_portion of the
message, because the rest of the message is transmitted in the clear. Even in the case of complete encryption, as shown in Eigure 9.3,
there is no protection of confidentiality because any observer can decrypt the message by using the sender's public key.
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ﬁ, however, possible to provide both the authentication function and confidentiality by a double use of the public-key scheme
)

Z = E(PUb, E(PRa, X))

X =D(PUa, E(PRb, 2))

Figure 9.4. Public-Key Cryptosystem: Authentication and Secrecy
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In this case, we begin as before by encrypting a message, using the sender's private key. This provides the digital signature. Next, we
encrypt again, using the receiver's public key. The final ciphertext can be decrypted only by the intended receiver, who alone has the
matching private key. Thus, confidentiality is provided. The disadvantage of this approach is that the public-key algorithm, which is
complex, must be exercised four times rather than two in each communication.

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is otherwise likely to lead to confusion. Public-key
systems are characterized by the use of a cryptographic algorithm with two keys, one held private and one available publicly. Depending



on the application, the sender uses either the sender's private key or the receiver's public key, or both, to perform some type of
cryptographic function. In broad terms, we can classify the use of public-key cryptosystems into three categories:

® Encryption/decryption: The sender encrypts a message with the recipient's public key.

® Digital signature: The sender "signs" a message with its private key. Signing is achieved by a cryptographic algorithm applied
to the message or to a small block of data that is a function of the message.
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® Key exchange: Two sides cooperate to exchange a session key. Several different approaches are possible, involving the
private key(s) of one or both parties.

Some algorithms are suitable for all three applications, whereas others can be used only for one or two of these applications.
indicates the applications supported by the algorithms discussed in this book.

Table 9.2. Applications for Public-Key Cryptosystems

Algorithm Encryption/Decryption Digital Signature Key Exchange
RSA Yes Yes Yes
Elliptic Curve Yes Yes Yes
Diffie-Hellman No No Yes
DSS No Yes No

Requirements for Public-Key Cryptography

The cryptosystem illustrated in through@ depends on a cryptographic algorithm based on two related keys. Diffie and
Hellman postulated thi em without demonstrating that such algorithms exist. However, they did lay out the conditions that such
algorithms must fulfill [DIEE76H]:

1. Itis computationally easy for a party B to generate a pair (public key PUp, private key PRpb).

2. ltis computationally easy for a sender A, knowing the public key and the message to be encrypted, M, to generate the
corresponding ciphertext:

C = E(PUp, M)

3. Itis computationally easy for the receiver B to decrypt the resulting ciphertext using the private key to recover the original
message:

M = D(PRb, C) = D[PRb, E(PUp, M)]
4. Itis computationally infeasible for an adversary, knowing the public key, PUp, to determine the private key, PRp.

5. Itis computationally infeasible for an adversary, knowing the public key, PUp, and a ciphertext,C, to recover the original
message, M.



We can add a sixth requirement that, although useful, is not necessary for all public-key applications:
6. The two keys can be applied in either order:
M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

These are formidable requirements, as evidenced by the fact that only a few algorithms (RSA, elliptic curve cryptography, Diffie-Hellman,
DSS) have received widespread acceptance in the several decades since the concept of public-key cryptography was proposed.
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Before elaborating on why the requirements are_so formidable, let us first recast them. The requirements boil down to the need for a
trap-door one-way function. A is one that maps a domain into a range such that every function value has a unique
inverse, with the condition that the calculation of the function is easy whereas the calculation of the inverse is infeasible:

BI'Not to be confused with a one-way hash function, which takes an arbitrarily large data field as its argument and
maps it to a fixed output. Such functions are used for authentication (see ).

Y = f(X) easy

X= fl(X) infeasible

Generally, easy is defined to mean a problem that can be solved in polynomial time as a function of input length. Thus, if the length of the

input is n bits, then the time to compute the function is proportional ton® where a is a fixed constant. Such algorithms are said to belong to
the class P. The terminfeasible is a much fuzzier concept. In general, we can say a problem is infeasible if the effort to solve it grows
faster than polynomial time as a function of input size. For example, if the length of the input is n bits and the time to compute the function

is proportional to 2n, the problem is considered infeasible. Unfortunately, it is difficult to determine if a particular algorithm exhibits this
complexity. Furthermore, traditional notions of computational complexity focus on the worst-case or average-case complexity of an
algorithm. These measures are inadequate for cryptography, which requires that it be infeasible to invert a_function for virtually all inputs,
not for the worst case or even average case. A brief introduction to some of these concepts is provided in.

We now turn to the definition of a trap-door one-way function, which is easy to calculate in one direction and infeasible to calculate in the
other direction unless certain additional information is known. With the additional information the inverse can be calculated in polynomial
time. We can summarize as follows: A trap-door one-way function is a family of invertible functions fk, such that

Y = f(X) easy, if kK and X are known
X
X

(Y easy, if K and ¥ are known

i (Y) infeasible, if Y is known but k is not known

Thus, the development of a practical public-key scheme depends on discovery of a suitable trap-door one-way function.

Public-Key Cryptanalysis

As with symmetric encryption, a public-key encryption scheme is vulnerable to a brute-force attack. The countermeasure is the same: Use
large keys. However, there is a tradeoff to be considered. Public-key systems depend on the use of some sort of invertible mathematical
function. The complexity of calculating these functions may not scale linearly with the number of bits in the key but grow more rapidly than
that. Thus, the key size must be large enough to make brute-force attack impractical but small enough for practical encryption and
decryption. In practice, the key sizes that have been proposed do make brute-force attack impractical but result in encryption/decryption
speeds that are too slow for general-purpose use. Instead, as was mentioned earlier, public-key encryption is currently confined to
key management and signature applications.
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Another form of attack is to find some way to compute the private key given the public key. To date, it has not been mathematically proven
that this form of attack is infeasible for a particular public-key algorithm. Thus, any given algorithm, including the widely used RSA

algorithm, is suspect. The history of cryptanalysis shows that a problem that seems insoluble from one perspective can be found to have a
solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This is, in essence, a probable-message attack. Suppose, for
example, that a message were to be sent that consisted solely of a 56-bit DES key. An adversary could encrypt all possible 56-bit DES
keys using the public key and could discover the encrypted key by matching the transmitted ciphertext. Thus, no matter how large the key

size of the public-key scheme, the attack is reduced to a brute-force attack on a 56-bit key. This attack can be thwarted by appending
some random bits to such simple messages.

k=1 EXT
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9.2. The RSA Algorithm

The pioneering paper by Diffie and Hellman [DIEE76H] introduced a new approach to cryptography and, in effect, challenged cryptologists
to come up with a cryptographic algorithm that met the requirements for public-key systems. One of the first of the responseo the
4

challenge was developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and first published in 1978 [RIVE7d].— The
Rivest-Shamir-Adleman (RSA) scheme has since that time reigned supreme as the most widely accepted and implemented

general-purpose approach to public-key encryption.

4 Apparently, the first workable public-key system for encryption/decryption was put forward by Clifford Cocks of
Britain's CESG in 1973 [COCK73]; Cocks's method is virtually identical to RSA.

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 0 and n 1 for somen. A typical size forn is

1024 bits, or 309 decimal digits. That is, nis less than 21024. We examine RSA in this section in some detail, beginning with an
explanation of the algorithm. Then we examine some of the computational and cryptanalytical implications of RSA.

Description of the Algorithm

The scheme developed by Rivest, Shamir, and Adleman makes use of an expression with exponentials. Plaintext is encrypted in blocks,
with each block having a binary value less than some number n. That is, the block size must be less than or equal to log(n); in practice, the

"-".: i+1

block size is i bits, where 2I <n == 2 . Encryption and decryption are of the following form, for some plaintext blockM and ciphertext
block C:

C=Memodn

M= Cd modn = (Me)d modn = Med modn

Both sender and receiver must know the value of n. The sender knows the value ofe, and only the receiver knows the value ofd. Thus, this
is a public-key encryption algorithm with a public key of PU = {e, n} and a private key ofPU = {d, n}. For this algorithm to be satisfactory for
public-key encryption, the following requirements must be met:
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1. Itis possible to find values of e, d, n such thatMed modn =M for allM <n.

2. ltis relatively easy to calculate mod M€ modn and Cd for all values of M < n.
3. ltis infeasible to determine d given e and n.
For now, we focus on the first requirement and consider the other questions later. We need to find a relationship of the form

Med modn=M
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he preceding relationship holds if e and d are multiplicative inverses modulof(n), where f(n) is the Euler totient function. It is shown in
that forp, g prime, f(pq) = (p 1)(q 1) The relationship betweene and d can be expressed as

Equation 9-1

edmod d(n) = 1

This is equivalent to saying

ed = 1 modf(n)

d=et

e modf(n)
That is, e and d are multiplicative inverses modf(n). Note that, according to the rules of modular arithmetic, this is true only ifd (and
therefore e) is relatively prime to f(n). Equivalently, gcdff(n),d) = 1. See for a proof tha satisfies the requirement
for RSA.

We are now ready to state the RSA scheme. The ingredients are the following:

p,q, two prime numbers (private, chosen)
n=pq (public, calculated)
e, with gcdf(n),e) = 1;1 < e <f(n) (public, chosen)

dE e1 (mod () (private, calculated)

The private key consists of {d, n} and the public key consists of {, n}. Suppose that user A has published its public key and that user B
wishes to send the message M to A. Then B calculatesC = Me mod n and transmitsC. On receipt of this ciphertext, user A decrypts by

calculating M = Cd mod n.

summarizes the RSA algorithm. An example, from[BING9Y], is shown in. For this example, the keys were generated

as follows:
1. Select two prime numbers, p=17 andq=11.

2. Calculaten=pq =17 x 11 = 187.
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3. Calculatef(n)=(p1)(q1) =16 x 10 = 160.

4. Selecte such thate is relatively prime tof(n) = 160 and less thanf(n) we choose e = 7.

5. Determine d such thatde == 1 (mod 160) andd < 160, The correct value isd = 23, because 23 x 7 = 161 = 10 x 160 + 1,d can
be calculated using the extended Euclid's algorithm 1»



Figure 9.5. The RSA Algorithm

Figure 9.6. Example of RSA Algorithm
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The resulting keys are public key PU = {7,187} and private keyPR = {23,187}. The example shows the use of these keys for a plaintext

input of M = 88. For encryption, we need to calculateC = 887 mod 187. Exploiting the properties of modular arithmetic, we can do this as
follows:
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7 ol 62 81_
88 mod 187 =[(88 mod 187) x (88 mod 187) x (88 mod 187)] mod 187
1
88" mod 187 = 88
882 mod 187 = 7744 mod 187 = 77
884 mod 187 = 59,969,536 mod 187 = 132
887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11
) _ .28 .
For decryption, we calculate M = 11"~ mod 187:
23 _ 1 f 4 8 8
117" mod 187 = [(11 mod 187) x (11" mod 187) x (11 mod 187) x (11" mod 187) x (11" mod 187)] mod 187
1
11" mod 187 =11
2
11" mod 187 = 121
11* mod 187 = 14,641 mod 187 = 55
118 mod 187 = 214,358,881 mod 187 = 33
12

1 3 mod 187 = (11 x 121 x 55 x 33 x 33) mod 187 = 79,720,245 mod 187 = 88

Computational Aspects

We now turn to the issue of the complexity of the computation required to use RSA. There are actually two issues to consider:
encryption/decryption and key generation. Let us look first at the process of encryption and decryption and then consider key generation.

Exponentiation in Modular Arithmetic



Both encryption and decryption in RSA involve raising an integer to an integer power, mod n. If the exponentiation is done over the
integers and then reduced modulo n, the intermediate values would be gargantuan. Fortunately, as the preceding example shows, we can
make use of a property of modular arithmetic:

[(@ modn) x (b modn)] modn = (axb) modn
Thus, we can reduce intermediate results modulo n. This makes the calculation practical.

Another consideration is the efficiency of exponentiation, because with RSA we are dealing with potentially large exponents. To see how

efficiency might be increased, consider that we wish to compute x 6. A straightforward approach requires 15 multiplications:

16
X EXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XX

However, we can achieve the same final result with only four multiplications if we repeatedly take the square of each partial result,

. . 2 4 8 16 . 11 .
successively forming X, x , X, X~ . As another example, suppose we wish to calculatex” ~ mod n for some integersx and n. Observe that

xll = x1+2+8 = (x)(xz)(xs). In this case we compute x mod n, x2 modn, x4 mod n, and x8 mod n and then calculate [k mod n) x (x2 mod n) X

(x8 mod n) mod n.
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More generally, suppose we wish to find the value ab with a and b positive integers. If we expressb as a binary numberbkbk1 ... bo then we
have

b= Y2
b2

Therefore,

a’mod n = H{F[Ef] modn = H n{y}mnd n| | modn
b =0 b0

We can therefore develop the algorithm for computing ab mod n, shown inlfigure 9. Zl |! able 9.3 shows an example of the execution of
this algorithm. Note that the variable ¢ is not needed; it is included for explanatory purposes. The final value ofc is the value of the
exponent.

Bl The algorithm has a long history; this particular pseudocode expression is fromfCORMO1].



Figure 9.7. Algorithm for Computing a’ modn

Note: The integer b is expressed as a binary number bkbkl ... b

Table 9.3. Result of the Fast Modular Exponentiation Algorithm for ab mod n, wherea=7,b=
560 = 1000110000, n =561

i 9 8 7 6 5 4 3 2 1 0

bi 1 0 0 0 1 1 0 0 0 0

c 1 2 4 8 17 35 70 140 280 560

f 7 49 157 526 160 241 298 166 67 1
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Efficient Operation Using the Public Key

To speed up the operation of the RSA algorithm using the public key, a specific choice o€ is usually made. The most common choice




is 65537 (216 1); two other popular choices are 3 and 17. Each of these choices has only two 1 bits and so the number of multiplications
required to perform exponentiation is minimized.

However, with a very small public key, such as e = 3, RSA becomes vulnerable to a simple attack. Suppose we have three different RSA
users who all use the value e = 3 but have unique values ofn, namely n1, n2, n3. If user A sends the same encrypted messagé to all three

users, then the three ciphertexts are C1 = M3 modn1; C2 = M3 modn2; C3 = M3 mod n3. It is likely thatn1, n2, and n3 are pairwise relatively
prime. Therefore, one can use the Chinese remainder theorem (CRT) to compute M3 mod (h1n2n3). By the rules of the RSA algorithm,M is

less than each of the nj therefore M3 < n1n2n3. Accordingly, the attacker need only compute the cube root oﬂ\/l3. This attack can be
countered by adding a unique pseudorandom bit string as padding to each instance of M to be encrypted. This approach is discussed
subsequently.

The reader may have noted that the definition of the RSA algorithm requires that during key generation the user selects a
value of e that is relatively prime tof(n). Thus, for example, if a user has preselectece = 65537 and then generated primesp and g, it may

turn out that gcd(f(n),e)il, Thus, the user must reject any value ofp or g that is not congruent to 1 (mod 65537).

Efficient Operation Using the Private Key

We cannot similarly choose a_ small constant value of d for efficient operation. A small value ofd is vulnerable to a brute-force attack and to
other forms of cryptanalysis [WIEN9Q]. However, there is a way to speed up computation using the CRT. We wish to compute the valuev

= Cd mod n. Let us define the following intermediate results:

Vp:Cd mod p Vq:Cd modq

Following the CRT, , define the quantities:

1 1
Xp=0x(q modp) Xg=px(p" modq)

The CRT then shows, using , that

M = (VpXp + VgXg) mod n

Further, we can simplify the calculation of Vp and Vq using Fermat's theorem, which states thauap1 = 1 (modp) if p and a are relatively
prime. Some thought should convince you that the following are valid:

d mod (p1) dmod (g1)

Vp:Cdmodp:C mod p Vq:Cdmodq:C mod g

The quantities d mod (P1) and d mod (g1) can be precalculated. The end result is that the calculation is approximately four times as fast as

evaluating M = Cd mod n directly BONEOZ].



Key Generation

Before the application of the public-key cryptosystem, each participant must generate a pair of keys. This involves the following tasks:

® Determining two prime numbers, p and g

® Selecting either e or d and calculating the other
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First, consider the selection of p and g. Because the value ofn = pq will be known to any potential adversary, to prevent the discovery ofp
and q by exhaustive methods, these primes must be chosen from a sufficiently large set (i.e.p and g must be large numbers). On the other
hand, the method used for finding large primes must be reasonably efficient.

At present, there are no useful techniques that yield arbitrarily large primes, so some other means of tackling the problem is needed. The
procedure that is generally used is to pick at random an odd number of the desired order of magnitude and test whether that number is
prime. If not, pick successive random numbers until one is found that tests prime.

A variety of tests for primality have been developed (e.g., see for a description of a number of such tests). Almost invariably, the
tests are probabilistic. That is, the test will merely determine that a given integer is probably prime. Despite this lack of certainty, these
tests can be run in such a way as to make the probab f if f zlse to 1.0 as desired. As an example, one of the more efficient and popular
algorithms, the Miller-Rabin algorithm, is described in Chapter §. With this algorithm and most such algorithms, the procedure for testing
whether a given integer nis prime is to perform some calculation that involvesn and a randomly chosen integera. If n “fails" the test, thenn

is not prime. If n "passes" the test, thenn may be prime or nonprime. Ifn passes many such tests with many different randomly chosen
values for a, then we can have high confidence thamnis, in fact, prime.

In summary, the procedure for picking a prime number is as follows.

1. Pick an odd integern at random (e.g., using a pseudorandom number generator).

2. Pick an integera < n at random.

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as a parameter. Ifn fails the test, reject the valuen and go to
step 1.

4. If n has passed a sufficient number of tests, accept; otherwise, go to step 2.

This is a somewhat tedious procedure. However, remember that this process is performed relatively infrequently: only when a new pair
(PU, PR) is needed.

It is worth noting how many numbers are likely to be rejected before a prime number is found. A result from number theory, known as the
prime number theorem, states that the primes near N are spaced on the average one every (InN) integers. Thus, on average, one would
have to test on the order of In(N) integers before a prime is found. Actually, because all even integers can be immediately rejected, the

correct figure is In(N)/2. For example, if a prime on the order of magnitude of 300 were sought, then about In(fOO)IZ =70 trials would be
needed to find a prime.

Having determined prime numbers p and g, the process of key generation is completed by selecting a value ot and calculating d or,
alternatively, selecting a value of d and calculating e. Assuming the former, then we need to select ane such that gcd((n), €) = 1 and then

calculate d = el(mod f(n)). Fortunately, there is a single algorithm that will, at the same time, calculate the greatest common divisor of
two integers and, if the gcd is 1, determine the inverse of one of the integers modulo the other. The algorithm, referred to as the extended
Euclid's algorithm, is explained in ‘. Thus, the procedure is to generate a series of random numbers, testing each againsf(n) until

a number relatively prime to f(n) is found. Again, we can ask the question: How many random numbers must we test to find a usable



number, that is, a number relatively prime to f(n)? It can be shown easily that the probability that two random numbers are relatively prime
is about 0.6; thus, very few tests would be needed to find a suitable integer (see ).
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The Security of RSA

Four possible approaches to attacking the RSA algorithm are as follows:

® Brute force: This involves trying all possible private keys.
® Mathematical attacks: There are several approaches, all equivalent in effort to factoring the product of two primes.
® Timing attacks: These depend on the running time of the decryption algorithm.

® Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm.

The defense against the brute-force approach is the same for RSA as for other cryptosystems, namely, use a large key space. Thus, the
larger the number of bits in d, the better. However, because the calculations involved, both in key generation and in encryption/decryption,
are complex, the larger the size of the key, the slower the system will run.

In this subsection, we provide an overview of mathematical and timing attacks.

The Factoring Problem

We can identify three approaches to attacking RSA mathematically:

® [actor ninto its two prime factors. This enables calculation off(n) = (p 1) x (q 1), which, in turn, enables determination ofd ==

e1 (mod f(n)).

® Determine f(n) directly, without first determiningp and g. Again, this enables determination ofd == e:L (mod f(n)).

® Determine d directly, without first determiningf(n).

Most discussions of the alysis of RSA have focused on the task of factoring n into its two prime factors. Determiningf(n) given n is

equivalent to factoring n . With presently known algorithms, determiningd given e and n appears to be at least as time-consuming
as the factoring problem [KALI9Y]. Hence, we can use factoring performance as a benchmark against which to evaluate the security of RSA.

For a large n with large prime factors, factoring is a hard problem, but not as hard as it used to be. A striking illustration of this is the
following. In 1977, the three inventors of RSA dared Scientific American readers to decode a cipher they printed in Martin Gardner's

"Mathematical Games" column [[GARD77]. They offered a $100 reward for the return of a plaintext sentence, an event they predicted
might no or some 40 quadrillion years. In April of 1994, a group working over the Internet claimed the prize after only eight months
of work tEUT94|]. This challenge used a public key size (length of) of 129 decimal digits, or around 428 bits. In the meantime, just as they
had done for DES, RSA Laboratories had issued challenges for the RSA cipher with key sizes of 100, 110, 120Q, and so on, digits. The
latest challenge to be met is the RSA-200 challenge with a key length of 200 decimal digits, or about 663 bits. shows the results
to date. The level of effort is measured in MIPS-years: a million-instructions-per-second processor running for one year, which is about 3 x

1013 instructions executed. A 1 GHz Pentium is about a 250-MIPS machine.
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Table 9.4. Progress in Factorization

Number of Decimal Approximate Number
Digits of Bits Date Achieved MIPS-years Algorithm

100 332 April 1991 7 Quadratic sieve

110 365 April 1992 75 Quadratic sieve

120 398 June 1993 830 Quadratic sieve

129 428 April 1994 5000 Quadratic sieve

130 431 April 1996 1000 Generalized number
field sieve

140 465 February 1999 2000 Generalized number
field sieve

155 512 August 1999 8000 Generalized number
field sieve

160 530 April 2003 Lattice sieve

174 576 December 2003 Lattice sieve

200 663 May 2005 Lattice sieve

A striking fact about concerns the method used. Until the mid-1990s, factoring attacks were made using an approach known as
the quadratic sieve. The attack on RSA-130 used a newer algorithm, the generalized number field sieve (GNFS), and was able to factor a
larger number than RSA-129 at only 20% of the computing effort.

The threat to larger key sizes is twofold: the continuing increase in computing power, and the continuing refinement of factoring algorithms.
We have seen that the move to a different algorithm resulted in a tremendous speedup. We can expect further refinements in the GNFS,
and the use of an even better algorithm is also a possibility. In fact, a related algorithm, the special numper field sieve (SNFS), can factor
numbers with a specialized form considerably faster than the generalized number field sieve. Figure 9.4 compares the performance of the
two algorithms. It is reasonable to expect a breakthrough that would enable a general factoring performance in about the same time as
SNFS, or even better _. Thus, we need to be careful in choosing a key size for RSA. For the near future, a key size in the range
of 1024 to 2048 bits seems reasonable.

Figure 9.8. MIPS-years Needed to Factor
(This item is displayed on page 277 in the print version)
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In addition to specifying the size of n, a number of other constraints have been suggested by researchers. To avoid values of that may be

factored more easily, the algorithm's inventors suggest the following constraints on p and q:

1

3.

p and g should differ in length by only a few digits. Thus, for a 1024-bit key (309 decimal digits), bofhand g should be on the

order of magnitude of 1075 to 10100.

Both (p 1) and (q 1) should contain a large prime factor.

ged(p 1, g 1) should be small.

In addition, it has been demonstrated that if e< nandd < n1/4, thend can be easily determined WIEN9(].
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Timing Attacks

If one needed yet another lesson about how difficult it is to assess the security of a cryptographic algorithm, the appearance of timing
attacks provides a stunning one. Paul Kocher, a cryptographic consultant, demonstrated that a snooper can determine a private key by
keeping track of how long a computer takes to decipher messages [KOCH94, . Timing attacks are applicable not just to RSA, but
to other public-key cryptography systems. This attack is alarming for two reasons: It comes from a completely unexpected direction and it
is a ciphertext-only attack.

A timing attack is somewhat analogous to a burglar guessing the combination of a safe by observing how |ong it takes for someone to turn
the dial from number to number. We can explain the attack using the modular exponentiation algorithm of figure 9.7, but the attack can be
adapted to work with any implementation that does not run in fixed time. In this algorithm, modular exponentiation is accomplished bit by
bit, with one modular multiplication performed at each iteration and an additional modular multiplication performed for each 1 bit.
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As Kocher points out in his paper, the attack is simplest to understand in an extreme case. Suppose the target system uses a modular
multiplication function that is very fast in almost all cases but in a few cases takes much more time than an entire average modular
exponentiation. The attack proceeds bit-by-bit starting with the leftmost bit, bk. Suppose that the firstj bits are known (to obtain the entire
exponent, start with j = 0 and repeat the attack until the entire exponent is known). For a given ciphertext, the attacker can complete the first
j iterations of thefor loop. The operation of the subsequent step depends on the unknown exponent bit. If the bit is setd "’r(d x a) modn
will be executed. For a few values of a and d, the modular multiplication will be extremely slow, and the attacker knows which these are.
Therefore, if the observed time to execute the decryption algorithm is always slow when this particular iteration is slow with a 1 bit, then

this bit is assumed to be 1. If a number of observed execution times for the entire algorithm are fast, then this bit is assumed to be 0.

In practice, modular exponentiation implementations do not have such extreme timing variations, in which the execution time of a single
iteration can exceed the mean execution time of the entire algorithm. Nevertheless, there is enough variation to make this attack practical.
For details, see [KOCHI{].

Although the timing attack is a serious threat, there are simple countermeasures that can be used, including the following:

® Constant exponentiation time: Ensure that all exponentiations take the same amount of time before returning a result. This is
a simple fix but does degrade performance.

® Random delay: Better performance could be achieved by adding a random delay to the exponentiation algorithm to confuse
the timing attack. Kocher points out that if defenders don't add enough noise, attackers could still succeed by collecting
additional measurements to compensate for the random delays.

® Blinding: Multiply the ciphertext by a random number before performing exponentiation. This process prevents the attacker
from knowing what ciphertext bits are being processed inside the computer and therefore prevents the bit-by-bit analysis
essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products. The private-key operation M = COI modn is implemented as
follows:

1. Generate a secret random number r between 0 andn 1.
2. Compute C'= C(re) mod n, where e is the public exponent.
3. Compute M' = (C')d mod n with the ordinary RSA implementation.

4. Compute M = M'r1 modn. In this equation, r1 is the multiplicative inverse of r modn; see for a discussion of this

L . ed
concept. It can be demonstrated that this is the correct result by observing that r~" modn =r modn.



RSA Data Security reports a 2 to 10% performance penalty for blinding.
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Chosen Ciphertext Attack and Optimal Asymmetric Encryption Padding

The basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is defined as an attack in which adversary chooses
a number of ciphertexts and is then given the corresponding plaintexts, decrypted with the target's private key. Thus, the adversary could
select a plaintext, encrypt it with the target's public key and then be able to get the plaintext back by having it decrypted with the private
key. Clearly, this provides the adversary with no new information. Instead, the adversary exploits properties of RSA and selects blocks of
data that, when processed using the target's private key, yield information needed for cryptanalysis.

A simple example of a CCA against RSA takes advantage of the following property of RSA:

Equation 9-2

E(PU, M) X E(PU,M,) = E(PU,[M; X M;])

We can decrypt C = Me using a CCA as follows.
1. Compute X =(C x 2e) mod n.

2. Submit X as a chosen ciphertext and receive backY = XOI mod n.

But now note the following:

= (C modn) x (2e mode n)
= (Me mod n) x (2e mode n)

= (ZM)e modn

Therefore, Y = (2M) mod n From this, we can deduce M. To overcome this sjmple attack, practical RSA-based cryptosystems randomly
pad the plaintext prior to encryption. This randomizes the ciphertext so that no longer holds. However, more sophisticated
CCAs are possible and a simple padding with a random value has been shown to be insufficient to provide the desired security. To
counter such attacks RSA Security Inc., a leading RSA vendor and former holder of the RSA patent, recommends modifying the plaintext

using a procedure known as optimal asym i yption padding (OAEP) A full discussion of the threats and OAEP are beyond our
scope; see [POINOZ] for an introduction and ELL94a|] for a thorough analysis. Here, we simply summarize the OAEP procedure.

depicts OAEP e@ryption. As a first step the message M to be encrypted is padded. A set of optional parameter® is passed

through a hash function H.= The output is then padded with zeros to get the desired length in the overall data block (DB). Next, a random
seed is generated and passed through another hash function, called the mask generating function (MGF). The resulting hash value is
bit-by-bit XORed with DB to produce a maskedDB. The maskedDB is in turn passed through the MGF to form a hash that is XORed with
the seed to produce the masked seed. The concatenation of the maskedseed and the maskedDB forms the encoded message EM. Note



that the EM includes the padded message, masked by the seed, and the seed, masked by the maskedDB. The EM is then encrypted
using RSA.

61 A hash function maps a variable-length data bloc message into a fixed-length value called a hash code. Hash
functions are discussed in depth in [Chapters 13 and[L2.
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Figure 9.9. Encryption Using Optimal Assymetric Encryption Padding (OAEP)




EM

P = encoding parameters DB = data block
M = message to be encoded MGF = mask generating function
H = hash function EM = encoded message

k=1 ExT
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ommended Reading and Web Sites

The recommended treatments of encryption listed in cover public-key as well as symmetric encryption.

NEXT B

[DIEE8Y] describes in detaaﬁral attempts to devise secure two-key cryptoalgorithms and the gradual evolution of a variety of
CO

protocols base
verification, co

d on them.

RMO1]] provides a conomplete and readable summary of all of the algorithms relevant to the
|:

putation, and cryptanalysis of RSA. [BONE9Y] discusses various cryptanalytic attacks on RSA. A more recent

discussion is

SHAMOY].
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Recommended Web Site

A Laboratories: Extensive collection of technical material on RSA and other topics in cryptography

NEXT B
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9.4. Key Terms, Review Questions, and Problems

Key Terms

Lhosen ciphertext attack (CCAi
l)ptimal asymmetric encryption padding (OAEP{

L)ublic key cryptoqraph\j

l)ublic key crvptosvstems]

ublic key encryptio

ime complexity

ﬁ
>

iming attaci

lrapdoor one-way functiorI

Review Questions

9.1 What are the principal elements of a public-key cryptosystem?
9.2  What are the roles of the public and private key?
9.3  What are three broad categories of applications of public-key cryptosystems?

9.4  What requirements must a public key cryptosystems fulfill to be a secure algorithm?



9.5 What is a one-way function?

9.6  Whatis a trapdoor one-way function?

9.7  Describe in general terms an efficient procedure for picking a prime number.

Problems



9.1  Prior to the discovery of any specific public-key schemes, such as RSA, an existence proof was developed whose purpose
was to demonstrate that public-key encryption is possible in theory. Consider the functions fi(x1) = z1; f2(x2, y2) = z2; f3(x3,

y3) = z3, where all values are integers with 1 <, yj, zi 5 N. Function f1 can be represented by a vector M1 of lengthN, in

which the kth entry is the value of f (k). Similarly,  and f3 can be represented by N x N matrices M2 and M3. The intent is

to represent the encryption/decryption process by table look-ups for tables with very large values of N. Such tables would
be impractically huge but could, in principle, be constructed. The scheme works as follows: construct M1 with a random
permutation of all integers between 1 and N; that is, each integer appears exactly once in M1. Construct M2 so that each
row contains a random permutation of the first N integers. Finally, fill in M3 to satisfy the following condition:
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fa(fa(f1(k).p).k) = p < =

In words,

1.

forallk, pwith 1=k, p=—=N

M1 takes an input k and produces an outputx.

M2 takes inputs x and p giving output z.

M3 takes inputs z and k and produces p.

The three tables, once constructed, are made public.

It should be clear that it is possible to construct M3 to satisfy the preceding condition. As an example, fill in M3 for
the following simple case:

5 5123 |41
4 412|5]11[3
Ml = ]2 M2= |1]3]2]|4](5 M3 =
3 311 ]412](5
I 2153141

Convention: The ith element of M1 corresponds tok = i. The ith row of M2 corresponds x = i; to the jth column of
M2 corresponds to p = j. The ith row of M3 corresponds to z = i; the jth column of M3 corresponds to k =j.

Describe the use of this set of tables to perform encryption and decryption between two users.

Argue that this is a secure scheme.

9.2  Perform encryption and decryption using the RSA algorithm, as i, for the following:

1.

p=3;q=11,e=7,M=5
p=509=11,e=3;M=9

p=7;9=11,e=17;M=8
p=11;9=13,e=11;M =7

p=17;9=31,e=7; M = 2. Hint: Decryption is not as hard as you think; use some finesse.



9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

In a public-key system using RSA, you intercept the ciphertext C = 10 sent to a user whose public key ise = 5, n = 35. What
is the plaintext M?

In an RSA system, the public key of a given user is e = 31, n = 3599. What is the private key of this user?Hint: First use trail
and error to determine p and g; then use the extended Euclidean algorithm to find the multiplicative inverse of 31 modulo

f(n).

In using the RSA algorithm, if a small number of repeated encodings give back the plaintext, what is the likely cause?

Suppose we have a set of blocks encoded with the RSA algorithm and we don't have the private key. Assume n=pq, e is
the public key. Suppose also someone tells us they know one of the plaintext blocks has a common factor with n. Does this
help us in any way?

In the RSA public-key encryption scheme, each user has a public key, e, and a private key,d. Suppose Bob leaks his
private key. Rather than generating a new modulus, he decides to generate a new public and a new private key. Is this
safe?

Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the factorization cannot be found in a
reasonable amount of time. Suppose Alice sends a message to Bob by representing each alphabetic character as an
integer between 0 and 25(A —* 0,..., Z—* 25), and then encrypting each number separately using RSA with largee and
large n. Is this method secure? If not, describe the most efficient attack against this encryption method.
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Using a spreadsheet (such as Excel), or a calculator, perform the described below operations. Document results of all
intermediate modular multiplications. Determine a number of modular multiplications per each major transformation (such
as encryption, decryption, primality testing, etc.).

a. Test all odd numbers in the range from 233 to 241 for primality using the Miller-Rabin test with base 2.
b. Encrypt the message blockM = 2 using RSA with the following parameters:e = 23 andn = 233 x 241.
c. Compute a private key @, p, q) corresponding to the given above public key (e, n).
d. Perform the decryption of the obtained ciphertext using two different methods:

1. without using the Chinese Remainder Theorem,

2. using the Chinese Remainder Theorem.

Assume that you generate an authenticated and encrypted message by first applying the RSA transformation determined
by your private key, and then enciphering the message using recipient's public key (note that you do NOT use hash
function before the first transformation). Will this scheme work correctly [i.e., give the possibility to reconstruct the original
message at the recipient's side, for all possible relations between the sender's modulus ns and the recipient's modulusnr
(ns > nR, Ns < NR, Ns = nR)]? Explain your answer. In case your answer is "no," how would you correct this scheme?

"I want to tell you, Holmes," Dr. Watson's voice was enthusiastic, “that your recent activities in network security have
increased my interest in cryptography. And just yesterday | found a way to make one-time pad encryption practical.”

"Oh, really?" Holmes' face lost its sleepy look.

"Yes, Holmes. The idea is quite simple. For a given one-way function F, | generate a long pseudorandom sequence of
elements by applying F to some standard sequence of arguments. The cryptanalyst is assumed to know F and the general
nature of the sequence, which may be as simpleas S, S+ 1, S + 2,..., but not secret S. And due to the one-way nature of F
no one is able to extract S given F(S + i) for somei, thus even if he somehow obtains a certain segment of the sequence,
he will not be able to determine the rest."



"l am afraid, Watson, that your proposal isn't without flaws and at least it needs some additional conditions to be satisfied by

F. Let's consider, for instance, the RSA encryption function, that is F(M) = MK mod N, K is secret. This function is believed
to be one-way, but | wouldn't recommend its use, for example, on the sequenceM =2, 3, 4, 5, 6,..."

"But why, Holmes?" Dr. Watson apparently didn't understand. "Why do you think that the resulting sequence X mod N, F

mod N, 4 mod N, ... is not appropriate for one-time pad encryption ifK is kept secret?"

"Because it isat least partiallypredictable, dear Watson, even if K is kept secret. You have said that the cryptanalyst is
assumed to know F and the general nature of the sequence. Now let's assume that he will obtain somehow a short
segment of the output sequence. In crypto circles this assumption is generally considered to be a viable one. And for this
output sequence, knowledge of just the first two elements will allow him to predict quite a lot of the next elements of the
sequence, even if not all of them, thus this sequence can't be considered to be cryptographically strong. And with the
knowledge of a longer segment he could predict even more of the next elements of the sequence. Look, knowing the
general nature of the sequence and its first two elements 2XmodN and 3 modN, you can easily compute its following
elements."

Show how this can be done.

9.12  Show how RSA can be represented by matrices M1, M2, and M3 o.
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9.13  Consider the following scheme:
1. Pick an odd number,E.
2. Pick two prime numbers,P and Q, where (P 1)(Q 1) 1 is evenly divisible byE.
3. Multiply P and Q to get N.
L Q=) (E = 1)+

4. Calculate i’ }'

Is this scheme equivalent to RSA? Show why or why not.

9.14  Consider the following scheme by which B encrypts a message for A.
1. Achooses two large primesP and Q that are also relatively prime to P 1) and (Q 1).
2. A publishes N = PQ as its public key.
3. A calculatesP' and Q' such thatPP" =1 (modQ 1) and QQ' =1 (modP 1).
4. B encrypts messageM asC = MN modN.
5. Afinds M by solvingM =cF (mod Q) and M =0 (mod P).
a. Explain how this scheme works.
b. How does it differ from RSA?

c. Isthere any particular advantage to RSA compared to this scheme?

d. Show how this scheme can be represented by matrices M1, M2, and M3 o.

9.15 "This is a very interesting case, Watson," Holmes said. "The young man loves a girl and she loves him too. However, her
father is a strange fellow who insists that his would-be son in law must design a simple and secure protocol for an



9.16

9.17

9.18

appropriate public-key cryptosystem he could use in his company's computer network. The young man came up with the
following protocol for communication between two parties, for example, user A wishing to send message M to user B:
(messages exchanged are in the format (sender's name, text, receiver's name)."

1. A sends B the following block: @, E(PUp, [M, A]), B).
2. B acknowledges receipt by
sending to A the following block: B, E(PUa, M, B]), A).

"You can see that the protocol is really simple. But the girl's father claims that the young man has not satisfied his call for a
simple protocol, because the proposal contains a certain redundancy and can be further simplified to the following:"

1. Asends B the block: @, E(PUp, M), B).
2. B acknowledges receipt by sending to A the block: B, E(PUa, M), A).

"On the basis of that, the girl's father refuses to allow his daughter to marry the young man, thus making them both
unhappy. The young man was just here to ask me for help."

"Hmm, | don't see how you can help him." Watson was visibly unhappy with the idea that the sympathetic young man has
to lose his love.

"Well, | think | could help. You know, Watson, redundancy is sometimes good to ensure the security of protocol. Thus, the
simplification the girl's father has proposed could make the new protocol vulnerable to an attack the original protocol was
able to resist," mused Holmes. "Yes, it is so, Watson. Look, all an adversary needs is to be one of the users of the network
and to be able to intercept messages exchanged between A and B. Being a user of the network, he has his own public
encryption key and is able to send his own messages to A or to B and to receive theirs. With the help of the simplified
protocol, he could then obtain message M user A has previously sent to B using the following procedure:"

Complete the description.

Use the fast exponentiation algorithm of to determine 5°°° mod 1234. Show the steps involved in the
computation.

Here is another realization of the fast exponentiation algorithm. Demonstrate that it is equivalent to the one i.
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1. LT aE D
2. if odd(e)then f¥—dxT
3. E€|ER
4, TE—TxT
5. if E>0then goto 2

6. outputf

The problem illustrates a simple application of the chosen ciphertext attack. Bob intercepts a ciphertext C intended for Alice

and encrypted with Alice's public key e. Bob want to obtain the original messageM = ¢ mod n. Bob chooses a random
value r less thann and computes

Z =r*modn

X =ZC modn



t =r"modn

Next, Bob gets Alice to authenticate (sign) X with her private key (as i ), thereby decrypting X. Alice returnsY =
x% modn. Show how Bob can use the information now available to him to determineM.

9.19  Show the OAEP decoding operation, used for decryption, that corresponds to the encoding operation .

9.20  Improve on algorithm P1 in .

a. Develop an algorithm that requires 2 multiplications andn + 1 additions. Hint: XL = xixx.

b. Develop an algorithm that requires only n + 1 multiplications andn + 1 additions. Hint: P(x) = ag + X x q(x), where
g(x) is a polynomial of degree (n 1).

Note: The remaining problems concern the knapsack public-key algorithm described in Appendix F.

9.21 What items are in the knapsack in Figure F.17?

9.22  Perform encryption and decryption using the knapsack algorithm for the following:
a a=(1,3,5 10);w=7;m=20;x=1101
b. a=(1,3,5,11, 23, 46, 136, 263));w = 203; m = 491;x = 11101000
c. a=(2,3,6,12,25);w=46;m=53;x=11101

d. a =(15,92, 108, 279, 563, 1172, 2243, 4468)w = 2393; m = 9291, x = 10110001

9.23

"
m = »aj

Why is it a requirement that =1

K==a
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Appendix 9A Proof of the RSA Algorithm

The basic elements of the RSA algorithm can be summarized as follows. Given two prime numbers p and g, withn = pg and a message
block M < n, two integerse and d are chosen such that

Med modn=M

We state in Eection 9.3, that the preceding relationship holds ife and d are multiplicative inverses modulof(n), where f(n) is the Euler
totient function. It is shown in [Chapter { that forp, g prime, f(n) = (p 1)(g 1). The relationship betweene and d can be expressed as

ed modf(n) =1

Another way to state this is that there is an integer k such thated = kf(n) + 1. Thus, we must show that

Equation 9-3

M mod n = MHP~Dle- U modn = M
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Basic Results

Before proving , we summarize some basic results. In, we showed that a property of modular arithmetic is the

following:

[(@modn) x (b modn)] modn = (axb) modn

From this, it should be easy to see that if we have x modn =1 thenx2 modn 1 and for any integery, we havex’

y

modn = 1. Similarly, if we

have x modn = 0, for any integery, we havex’” modn = 0.
Another property of modular arithmetic is

[(@a modn) (b modn)] modn = (ab) modn

The other result we need is Euler's theorem, which was developed in . If integersa and n are relatively prime, thanaf(n) mod n =
1.

Proof

First we show that Mk(pl)(ql)+1 mod p =M mod p. There are two cases to consider.
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Case 1: M and p are not relatively prime; that isp divides M. In this caseM mod p = 0 and '[hereforeMk(pl)(ql)+1

)+l

mod p = 0. Thus, Mk(pl)(ql modp =M modp.

Case 2: If M and p are relatively prime, by Euler's theoreme(p) mod p = 1. We proceed as follows:

VKEDEDL _ oyKeD@), o

= [P

mod p

= M )N modp

= (M modp) x [(M"®)) mod p(%)
= (M modp) x (1)k(ql) (by Euler's theorem)

=M modP

We now observe that

[Mk(pl)(ql)J'l M] mod p [Mk(pl)(ql)Jr1 mod p] [M mod p] =0

Thus, p divides [Mk(pl)(q1)+1 M]. By the same reasoning, we can show thag divides [Mk(pl)(q1)+1 M]. Because p and q are distinct
primes, there must exist an integer r that satisfies

<PV = (gyr = r

Therefore, p divides [Mk(pl)(q1)+1 M], and soMkf(n)+1 modn = Mk(pl)(q1)+1 modn =M.

E=a wExT
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Appendix 9B The Complexity of Algorithms

The central issue in assessing the resistance of an encryption algorithm to cryptanalysis is the amount of time that a given type of attack
will take. Typically, one cannot be sure that one has found the most efficient attack algorithm. The most that one can say is that for a
particular algorithm, the level of effort for an attack is of a particular order of magnitude. One can then compare that order of magnitude
to the speed of current or predicted processors to determine the level of security of a particular algorithm.

A common measure of the efficiency of an algorithm is its time complexity. We define the time complexity of an algorithm to be f(n) if,
for all nand all inputs of lengthn, the execution of the algorithm takes at most f() steps. Thus, for a given size of input and a given
processor speed, the time complexity is an upper bound on the execution time.
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There are several ambiguities here. First, the definition of a step is not precise. A step could be a single operation of a Turing machine, a
single processor machine instruction, a single high-level language machine instruction, and so on. However, these various definitions of
step should all be related by simple multiplicative constants. For very large values of n, these constants are not important. What is

important is how fast the relative execution time is growing. For example, if we are concerned about whether to use 50-digit (n = 1050) or

100-digit (n = 10100) keys for RSA, it is not necessary (or really possible) to know exactly how long it would take to break each size of
key. Rather, we are interested in ballpark figures for level of effort and in knowing how much extra relative effort is required for the larger
key size.

A second issue is that, generally speaking, we cannot pin down an exact formula for f(n). We can only approximate it. But again, we are
primarily interested in the rate of change of f(n) as n becomes very large.

There is a standard mathematical notation, known as the "big-O" notation, for characterizing the time complexity of algorithms that is
useful in this context. The definition is as follows: if and only if there exist two numbers a and M such that

Equation 9-4

It(n)| = a x |g,|:u]||._ n=M

An example helps clarify the use of this notation. Suppose we wish to evaluate a general polynomial of the form

p0) = anx" + an1xX™ + ... + a1x + a0
The following simple-minded algorithm is from [POHL81]|:

algorithm P1,;
n, i, j: integer; x, polyval: real;
a, S:array [0..100] of real;
begin
read(x, n);
fori:=0upto ndo
begin


file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

SJi] := 1; read(al[i]);
forj:=1uptoido S[i] := xx S[i[;
S[i] := a[i] x S[i]
end;
polyval := 0;
fori:=0upto n do polyval := polyval + Sil;
write (‘'value at', x, 'is', polyval)
end.

In this algorithm, each subexpression is evaluated separately. Each S[i] requires (i + 1) multiplications: i multiplications to compute S}
and one to multiply by a[i]. Computing all n terms requires

L. (n+ 2)n + 1)

S(i+1)= -

multiplications. There are also (n + 1) additions, which we can ignore relative to the much larger number of multiplications. Thus, the time
complexity of this algorithm is f(n) = (n + 2)(n + 1)/2. We now show that f(n) = O(nz). From the definition of, we want to
show that for a= 1 andM = 4, the relationship holds for gf) = n2. We do this by induction onn. The relationship holds forn = 4 because (4

+2)(4+1)2=15< 42 =16. Now assume that it holds for all values ofnup to k [i.e.,(k + 2)(k + 1)/2 < k2. Then, withn =k + 1.
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n+2)n+1) (k+3)k+2)
2 2
(k + 2)(k + 1)
2
K2+ k+2
K+ 2k+1=(k+ 1)y =n

k + 2

I

Therefore, the result is true for n =k + 1.

In general, the big-O notation makes use of the term that grows the fastest. For example,
1 O[ax7 + 3x3 + sin(x)] O(ax7) = O(x7)
2. O(en + anlo) = O(en)

3. O(n!+ n50) =0(n!)

uch more to the big-O notation, with fascinating ramifications. For the interested reader, two of the best accounts are in
RAH94] and KNUT97].

An algorithm with an input of size nis said to be

® |inear: Ifthe running time is O()



® Polynomial: If the running time is O(nt) for some constantt

® Exponential: If the running time is O@h(n)) for some constantt and polynomial h()

Generally, a problem that can be solved in polynomial time is considered feasible, whereas anything worse than polynomial time,
especially exponential time, is considered infeasible. But you must be careful with these terms. First, if the size of the input is small
enough, even very complex algorithms become feasible. Suppose, for example, that you have a system that can execute operations per
unit time. shows the size of input that can be handled in one time unit for algorithms of various complexities. For algorithms of
exponential or factorial time, only very small inputs can be accommodated.

Table 9.5. Level of Effort for Various Levels of Complexity

Complexity Size Operations
log2n 21012 _ 103x1011 1012
N 1012 1012
n2 106 1012
n6 102 1012
22 39 1012
n! 15 1012

The second thing to be careful about is the way in which the input is characterized. For example, the complexity of cryptanalysis of an
encryption algorithm can be characterized equally well in terms of the number of possible keys or the length of the key. For the Advanced

Encryption Standard (AES), for example, the number of possible keys is 2128 and the length of the key is 128 bits. If we consider a
single encryption to be a "step" and the number of possible keys to be N = 2n, then the time complexity of the algorithm is linear in terms

of the number of keys [O(N)] but exponential in terms of the length of the key [O(f')].

e prey NExT
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No Singhalese, whether man or woman, would venture out of the house without a bunch of keys in his hand, for
without such a talisman he would fear that some devil might take advantage of his weak state to slip into his body.

The Golden Bough, Sir James George Frazer

Key Points

® Public-key encryption schemes are secure only if the authenticity of the public key is assured. A public-key
certificate scheme provides the necessary security.

® A simple public-key algorithm is Diffie-Hellman key exchange. This protocol enables two users to establish a
secret key using a public-key scheme based on discrete logarithms. The protocol is secure only if the
authenticity of the two participants can be established.

® Elliptic curve arithmetic can be used to develop a variety of elliptic curve cryptography (ECC) schemes,
including key exchange, encryption, and digital signature.

® o purposes of ECC, elliptic curve arithmetic involves the use of an elliptic curve equation defined over a
finite field. The coefficients and variables in the equation are elements of a finite field. Schemes using gand

GF(Zm) have been developed.

This chapter continues our overview of public-key encryption. We examine key distribution and management for public-key systems,
including a discussion of Diffie-Hellman key exchange. Finally, we provide an introduction to elliptic curve cryptography.

e prey | NEXT B
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10.1. Key Management

In , we examined the problem of the distribution of secret keys. One of the major roles of public-key encryption has been to
address the problem of key distribution. There are actually two distinct aspects to the use of public-key cryptography in this regard:

® The distribution of public keys

® The use of public-key encryption to distribute secret keys

We examine each of these areas in turn.
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Distribution of Public Keys

Several techniques have been proposed for the distribution of public keys. Virtually all these proposals can be grouped into the following
general schemes:

® pyplic announcement
® pyblicly available directory
® Public-key authority

® Public-key certificates

Public Announcement of Public Keys

On the face of it, the point of public-key encryption is that the public key is public. Thus, if there is some broadly accepted public-key

algorithm, such as RSA, any participant can send his or her public key to any other participant or broadcast the key to the community at
large (. For example, because of the growing popularity of PGP (pretty good privacy, discussed iA), which makes
use of RSA, many PGP users have adopted the practice of appending their public key to messages that they send to public forums, such
as USENET newsgroups and Internet mailing lists.

Figure 10.1. Uncontrolled Public-Key Distribution
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Although this approach is convenient, it has a major weakness. Anyone can forge such a public announcement. That is, some user could
pretend to be user A and send a public key to another participant or broadcast such a public key. Until such time as user A discovers the
forgery and alerts other participants, the forger is able to read all encrypted messages intended for A and can use the forged keys for

authentication (see figure 9.3).

Publicly Available Directory

A greater degree of security can be achieved by maintaining a publicly available dynamic directory of public intenance and
distribution of the public directory would have to be the responsibility of some trusted entity or organization (gigure 10.4). Such a scheme

would include the following elements:

1. The authority maintains a directory with a {name, public key} entry for each participant.

2. Each participant registers a public key with the directory authority. Registration would have to be in person or by some form of
secure authenticated communication.
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3. A participant may replace the existing key with a new one at any time, either because of the desire to replace a public key that
has already been used for a large amount of data, or because the corresponding private key has been compromised in some

way.

4. Participants could also access the directory electronically. For this purpose, secure, authenticated communication from the
authority to the participant is mandatory.

Figure 10.2. Public-Key Publication
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This scheme is clearly more secure than individual public announcements but still has vulnerabilities. If an adversary succeeds in obtaining
or computing the private key of the directory authority, the adversary could authoritatively pass out counterfeit public keys and
subsequently impersonate any participant and eavesdrop on messages sent to any participant. Another way to achieve the same end is for
the adversary to tamper with the records kept by the authority.

Public-Key Authority

Stronger security for public-key distribution can be achieved by providing tighter contral over the distribution of public keys from the
directory. A typical scenario is illustrated in , which is based on a figure in POPE7Y]. As before, the scenario assumes that a
central authority maintains a dynamic directory of public keys of all participants. In addition, each participant reliably knows a public key for
the authority, with only the authority knowing the corresponding private key. The following steps (matched by number to
occur:

1. A sends a timestamped message to the public-key authority containing a request for the current public key of B.

2. The authority responds with a message that is encrypted using the authority's private key, PRauth Thus, A is able to decrypt the
message using the authority's public key. Therefore, A is assured that the message originated with the authority. The message

includes the following:
® ps public key, PUp which A can use to encrypt messages destined for B

® The original request, to enable A to match this response with the corresponding earlier request and to verify that the
original request was not altered before reception by the authority
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® The original timestamp, so A can determine that this is not an old message from the authority containing a key other
than B's current public key



3. A stores B's public key and also uses it to encrypt a message to B containing an identifier of A (IDA) and a nonce (N1), which is
used to identify this transaction uniquely.

4,5. Bretrieves A's public key from the authority in the same manner as A retrieved B's public key.

At this point, public keys have been securely delivered to A and B, and they may begin their protected exchange. However, two
additional steps are desirable:

6. B sends a message to A encrypted with PUg and containing A's nonce (N1) as well as a new nonce generated by B N2)
Because only B could have decrypted message (3), the presence of N1 in message (6) assures A that the correspondent is B.

7. A returns N2, encrypted using B's public key, to assure B that its correspondent is A.

Figure 10.3. Public-Key Distribution Scenario
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Thus, a total of seven messages are required. However, the initial four messages need be used only infrequently because both A and B
can save the other's public key for future use, a technique known as caching. Periodically, a user should request fresh copies of the public
keys of its correspondents to ensure currency.

Public-Key Certificates

The scenario of is attractive, yet it has some drawbacks. The public-key authority could be somewhat of a bottleneck in the



system, for a user must appeal to the authority for a public key for every other user that it wishes to contact. As before, the directory of
names and public keys maintained by the authority is vulnerable to tampering.
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An alternative approach, first suggested by Kohnfelder , is to use certificates that can be used by participants to exchange keys
without contacting a public-key authority, in a way that is as reliable as if the keys were obtained directly from a public-key authority. In
essence, a certificate consists of a public key plus an identifier of the key owner, with the whole block signed by a trusted third party.
Typically, the third party is a certificate authority, such as a government agency or a financial institution, that is trusted by the user
community. A user can present his or her public key to the authority in a secure manner, and obtain a certificate. The user can then publish
the certificate. Anyone needed this user's public key can obtain the certificate and verify that it is valid by way of the attached trusted
signature. A participant can also convey its key information to another by transmitting its certificate. Other participants can verify that the
certificate was created by the authority. We can place the following requirements on this scheme:

1. Any participant can read a certificate to determine the name and public key of the certificate's owner.
2. Any participant can verify that the certificate originated from the certificate authority and is not counterfeit.
3. Only the certificate authority can create and update certificates.
These requirements are satisfied by the original proposal in . Denning added the following additional requirement:
4. Any participant can verify the currency of the certificate.

A certificate scheme is illustrated in . Each participant applies to the certificate authority, supplying a public key and requesting
a certificate.

Figure 10.4. Exchange of Public-Key Certificates
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Application must be in person or by some form of secure authenticated communication. For participant A, the authority provides a
certificate of the form

CA = E(PRauth, [T|[IDA||PUa])

where PRauth is the private key used by the authority andT is a timestamp. A may then pass this certificate on to any other participant,
who reads and verifies the certificate as follows:

D(PUauth, CA) = D(PUauth, E(PRauth, [T[[IDA|[PUa])) = (T||IDA|IPUa)

The recipient uses the authority's public key, PUauth to decrypt the certificate. Because the certificate is readable only using the authority's
public key, this verifies that the certificate came from the certificate authority. The elements IDA and PUg provide the recipient with the
name and public key of the certificate's holder. The timestamp T validates the currency of the certificate. The timestamp counters the
following scenario. A's private key is learned by an adversary. A generates a new private/public key pair and applies to the certificate
authority for a new certificate. Meanwhile, the adversary replays the old certificate to B. If B then encrypts messages using the
compromised old public key, the adversary can read those messages.

In this context, the compromise of a private key is comparable to the loss of a credit card. The owner cancels the credit card number but is
at risk until all possible communicants are aware that the old credit card is obsolete. Thus, the timestamp serves as something like an
expiration date. If a certificate is sufficiently old, it is assumed to be expired.

One scheme has become universally accepted for formatting public-key certificates: the X.509 standard. X.509 certificates are used in

most network security applications, including IP security, secure sockets layer (SSL), secure electronic transactions (SET), and S/IMIME,
all of which are discussed in Part Two. X.509 is examined in detail in .

Distribution of Secret Keys Using Public-Key Cryptography

Once publie been disﬁ, have become accessible, secure communication that thwarts eavesdropping ),
!- igure 9.4

tampering (Eigure 9.3), or both ) is possible. However, few users will wish to make exclusive use of public-key encryption for
communication because of the relatively slow data rates that can be achieved. Accordingly, public-key encryption provides for the
distribution of secret keys to be used for conventional encryption.

Simple Secret Key Distribution

An extremely simple scheme was put forward by Merkle [MERK7Y], as illustrated in. If A wishes to communicate with B, the

following procedure is employed:

1. A generates a public/private key pair PUa, PRa} and transmits a message to B consisting ofPUg and an identifier of A, IDA.

2. B generates a secret key,Ks, and transmits it to A, encrypted with A's public key.

3. A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can decrypt the message, only A and B will know the
identity of Ks.

4, A discards PUg and PRg and B discards PUa.
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Figure 10.5. Simple Use of Public-Key Encryption to Establish a Session Key
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A and B can now securely communicate using conventional encryption and the session keKs. At the completion of the exchange,
both A and B discard Ks. Despite its simplicity, this is an attractive protocol. No keys exist before the start of the communication and none
exist after the completion of communication. Thus, the risk of compromise of the keys is minimal. At the same time, the communication is
secure from eavesdropping.

The protocol depicted in is insecure_against an adversary who can intercept lﬁlessages and then either j ay the intercepted
message or substitute another message (see Eigure 1.4d). Such an attack is known as ajnan-in-the-middle attac ? In this case,
if an adversary, E, has control of the intervening communication channel, then E can compromise the communication in the following
fashion without being detected:

1. A generates a public/private key pair {PUa, PRa} and transmits a message intended for B consisting oPUg and an identifier of
A, IDA.

2. Eintercepts the message, creates its own public/private key pair {PUe, PRe} and transmits PUg||IDA to B.
3. B generates a secret key, Ks, and transmits EPUg, Ks).

4. E intercepts the message, and learns Ks by computing DPRe, E(PUg, Ks)).

5. E transmits E(PUg, Ks) to A.

The result is that both A and B know Ks and are unaware thatKs has also been revealed to E. A and B can now exchange messages using
Ks E no longer actively interferes with the communications channel but simply eavesdrops. KnowingKs E can decrypt all messages, and
both A and B are unaware of the problem. Thus, this simple protocol is only useful in an environment where the only threat is
eavesdropping.

Secret Key Distribution with Confidentiality and Authentication

, based on an approach suggested in NEED7], provides protection against both active and passive attacks. We begin at a

point when it is assumed that A and B have exchanged public keys by one of the schemes described earlier in this section. Then the
following steps occur:



1. A uses B's public key to encrypt a message to B containing an identifier of A (IDA) and a nonce (N1), which is used to identify
this transaction uniquely.

2. B sends a message to A encrypted with PUg and containing A's nonce (N1) as well as a new nonce generated by B N2)
Because only B could have decrypted message (1), the presence ofN1 in message (2) assures A that the correspondent is B.
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3. A returns N2 encrypted using B's public key, to assure B that its correspondent is A.
4. A selects a secret key Ks and sendsM = E(PUp, E(PRa, Ks)) to B. Encryption of this message with B's public key ensures that

only B can read it; encryption with A's private key ensures that only A could have sent it.

5. B computes D(PUa, D(PRb, M)) to recover the secret key.

Figure 10.6. Public-Key Distribution of Secret Keys

iView full size imaqei
CLy ECPL . [ 1]

T TR

* Initiato " Respond
. A % B

(3) ECPUL N ‘_/-//

(4) E(PU,. E(PR,. K.

(2) (P [N, V3D

Notice that the first three steps of this scheme are the same as the last three steps of . The result is that this scheme ensures
both confidentiality and authentication in the exchange of a secret key.

A Hybrid Scheme

Yet another way to use public-key encryption to distribute secret keys is a hybrid approach in use on IBM mainframes | . This
scheme retains the use of a key distribution center (KDC) that shares a secret master key with each user and distributes secret session
keys encrypted with the master key. A public key scheme is used to distribute the master keys. The following rationale is provided for
using this three-level approach:

® performance: There are many applications, especially transaction-oriented applications, in which the session keys change
frequently. Distribution of session keys by public-key encryption could degrade overall system performance because of the



relatively high computational load of public-key encryption and decryption. With a three-level hierarchy, public-key encryption is
used only occasionally to update the master key between a user and the KDC.

® Backward compatibility: The hybrid scheme is easily overlaid on an existing KDC scheme, with minimal disruption or
software changes.

The addition of a public-key layer provides a secure, efficient means of distributing master keys. This is an advantage in a configuration in
which a single KDC serves a widely distributed set of users.

K==1
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10.2. Diffie-Hellman Key Exchange

The first published public-key algorithm appeared in the seminal pr by Diffie and Hellman that defined public-key cryptography

IDIEE76H] and is generally referred to as Diffie-Hellman key exchang.1
technique.

A number of commercial products employ this key exchange

[ williamson of Britain's CESG published the identical scheme a few months earlier in a classified document
[WILL76] and claims to have discovered it several years prior to that; see [ELLI9g] for a discussion.

The purpose of the algorithm is to enable two users to securely exchange a key that can then be used for subsequent encryption of
messages. The algorithm itself is limited to the exchange of secret values.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete logarithms. Briefly, we can define the
discrete logarithm in the following way. First, we define aprimitive root of a prime numberp as one whose powers modulop generate all
the integers from 1 to p 1. That is, ifais a primitive root of the prime numberp, then the numbers

Pl mod p

amodp, a2 modp,..., a
are distinct and consist of the integers from 1 through p 1 in some permutation.

For any integer b and a primitive roota of prime number p, we can find a unique exponenti such that

b= (mod p) where 0 == | == (p 1)

The exponent i is referred to as the discrete logarithm ofb for the basea, modp. We express this value as dlog,p (b). See for an
extended discussion of discrete logarithms.

The Algorithm

summarizes the Diffie-Hellman key exchange algorithm. For this scheme, there are two publicly known numbers: a prime
number g and an integer that is a primitive root ofq. Suppose the users A and B wish to exchange a key. User A selects a random integeXa

< gand computes YA = aXA mod g. Similarly, user B independently selects a random integeXA < g and computes YB = aXB mod g. Each
side keeps the X value private and makes theY value available publicly to the other side. User A computes the key aK = (YB)XA mod g and

user B computes the key as K= (YA)XB mod g. These two calculations produce identical results:

= (YB)><A modq

= (aXB mod q)XA modq

_ (aXB)XA modgq by the rules of modular arithmetic

= (aXB XA modq



= (aXA)XB modq

= (aXA mod q)
= (axA mod q)xB modq

= (YA)XB mod g
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Figure 10.7. The Diffie-Hellman Key Exchange Algorithm




Calculation of Secret Key by User B
K=Y, "t mod g

The result is that the two sides have exchanged a secret value. Furthermore, because XA and XB are private, an adversary only has the
following ingredients to work with: g, a, YA, and YB. Thus, the adversary is forced to take a discrete logarithm to determine the key. For
example, to determine the private key of user B, an adversary must compute

XB = dloga,q (YB)
The adversary can then calculate the key K in the same manner as user B calculates it.

The security of the Diffie-Hellman key exchange lies in the fact that, while it is relatively easy to calculate exponentials modulo a prime, it is
very difficult to calculate discrete logarithms. For large primes, the latter task is considered infeasible.

Here is an example. Key exchange is based on the use of the prime number q = 353 and a primitive root of 353, in this casea = 3. A and B
select secret keys XA = 97 and XB = 233, respectively. Each computes its public key:

A computes YA _ 397 mod 353 = 40.
B computes YB _ 3233 mod 353 = 248.
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After they exchange public keys, each can compute the common secret key:

97 =160.

A computes K = (YB) A mod 353 = 248" " mod 353

23

= (Yp) € mod 353 = 40233 mod 353 = 160.

B computes K

We assume an attacker would have available the following information:
q=353;a=3; YA=40; YB = 248

In this simple example, it would be possible by brute force to determine the secret key 160. In particular, an attacker E can determine the

common key by discovering a solution to the equation 3a mod 353 = 40 or the equation ? mod 353 = 248. The brute-force approach is to
calculate powers of 3 modulo 353, stopping when the result equals either 40 or 248. The desired answer is reached with the exponent

value of 97, which provides 397 mod 353 = 40.

With larger numbers, the problem becomes impractical.



Key Exchange Protocols

shows a simple protocol that makes use of the Diffie-Hellman calculation. Suppose that user A wishes to set up a connection
with user B and use a secret key to encrypt messages on that connection. User A can generate a one-time private key XA, calculate YA,

and send that to user B. User B responds by generating a private value XB calculating YB, and sending YB to user A. Both users can now
calculate the key. The necessary public values g and a would need to be known ahead of time. Alternatively, user A could pick values foq
and a and include those in the first message.

Figure 10.8. Diffie-Hellman Key Exchange
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As an example of another use of the Diffie-Hellman algorithm, suppose that a group of users (e.g., all users on a LAN) each generate a
long-lasting private value Xj (for useri) and calculate a public valueYj. These public values, together with global public values fog and a,
are stored in some central directory. At any time, user j can access useri's public value, calculate a secret key, and use that to send an
encrypted message to user A. If the central directory is trusted, then this form of communication provides both confidentiality and a
degree of authentication. Because only i and j can determine the key, no other user can read the message (confidentiality). Recipient
knows that only user j could have created a message using this key (authentication). However, the technique does not protect against
replay attacks.
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Man-in-the-Middle Attack



The protocol depicted in is insecure against a man-in-the-middle attack. Suppose Alice and Bob wish to exchange keys, and
Darth is the adversary. The attack proceeds as follows:

1. Darth prepares for the attack by generating two random private keys XpD1 and XD2 and then computing the corresponding
public keys YD1 and YD2.

2. Alice transmits YA to Bob.
3. Darth intercepts YA and transmits YD1 to Bob. Darth also calculatesk2 = (YA)XDZ mod g.

4. Bob receives YD1 and calculatesK1 = (YD 1)XE mod g.

5. Bob transmits XA to Alice.
6. Darth intercepts XA and transmits YD2 to Alice. Darth calculatesk1 = (YB)XDl mod g.

7. Alice receives YD2 and calculatesK2 = (YD2)XA mod g.

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth share secret key K1 and Alice and Darth share
secret key K2. All future communication between Bob and Alice is compromised in the following way:

1. Alice sends an encrypted messageM: E(K2, M).
2. Darth intercepts the encrypted message and decrypts it, to recoveM.

3. Darth sends Bob E(K1, M) or E(K1, M"), where M' is any message. In the first case, Darth simply wants to eavesdrop on the
communication without altering it. In the second case, Darth wants to modify the message going to Bob.

The key exchange protocol is vulnerable to such an attack because it does not authenticate the participan is v rability can be
overcome with the use of digital signatures and public-key certificates; these topics are explored in and[14.

K==1
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10.3. Elliptic Curve Arithmetic

Most of the products and standards that use public-key cryptography for encryption and digital signatures use RSA. As we have seen, the
key length for secure RSA use has increased over recent years, and this has put a heavier processing load on applications using RSA.
This burden has ramifications, especially for electronic commerce sites that conduct large numbers of secure transactions. Recently, a
competing system has begun to challenge RSA: elliptic curve cryptography (ECC). Already, ECC is showing up in standardization efforts,
including the IEEE P1363 Standard for Public-Key Cryptography.
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The principal attraction of ECC, compared to RSA, is that it appears to offer equal security for a far smaller key size, thereby reducing
processing overhead. On the other hand, although the theory of ECC has been around for some time, it is only recently that products have
begun to appear and that there has been sustained cryptanalytic interest in probing for weaknesses. Accordingly, the confidence level in
ECC is not yet as high as that in RSA.

ECC is fundamentally more difficult to explain than either RSA or Diffie-Hellman, and a full mathematical description is beyond the scope of
this book. This section and the next give some background on elliptic curves and ECC. We begin with a brief review of the concept of
abelian group. Next, we examine the concept of elliptic curves defined over the real numbers. This is followed by a look at elliptic curves
defined over finite fields. Finally, we are able to examine elliptic curve ciphers.

The reader may wish to review the material on finite fields in before proceeding.

Abelian Groups

Recall from , that an abeliangroup G, sometimes denoted by {G, ¢ }, is a set of elements with a binary operation, oted by e,

that associates to each ordered pair (a, b) of elements in G an element (a « b) in G, such that the following axioms are obey':-:.2

I The operator ¢ is generic and can refer to addition, multiplication, or some other mathematical operation.

(A1) Closure: Ifaandb belong to G, thena e+ bis also in G.

(A2) Associative: ac(bec)=(asb)ecforalla b,cinG.

(A3) Identity element: There is an element e inG such thatase =esa=aforallainG.
(A4) Inverse element: For eachain G there is an elementa’ inG such thataesa =a' *sa=e.
(A5) Commutative: asb=beaforalla, binG.

A number of public-key ciphers are based on the use of an abelian group. For example, Diffie-Hellman key exchange involves multiplying
pairs of nonzero integers modulo a prime number g. Keys are generated by exponentiation over the group, with exponentiation defined as


file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

g=(aXaX .. Xa)

repeated multiplication. For example, ak modq= k times mod g. To attack Diffie-Hellman, the

attacker must determine k given a and ak; this is the discrete log problem.

For elliptic curve cryptography, an operation over elliptic curves, called addition, is used. Multiplication is defined by repeated addition. For

aXk=(ata+ ... +a)

example, k times , where the addition is performed over an elliptic

curve. Cryptanalysis involves determining k given a and (a x k).
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An elliptic curve is defined by an equation in two variables, with coefficients. For cryptography, the variables and coefficients are
restricted to elements in a finite field, which results in the definition of a finite abelian group. Before looking at this, we first look at elliptic
curves in which the variables and coefficients are real numbers. This case is perhaps easier to visualize.

Elliptic Curves over Real Numbers

Elliptic curves are not ellipses. They are so named because they are described by cubic equations, similar to those used for calculating the
circumference of an ellipse. In general, cubic equations for elliptic curves take the form

2 _ .3 2
y +axy+by=x" +cx +dx+e

where a, b, ¢, d, and e are real numbers andx andy take on values in the real number For our purpose, it is sufficient to limit ourselves
to equations of the form

B3I Note thatx and v are true variables, which take on values. This is in contrast to our discussion of polynomial rings
and fields in , where x was treated as an indeterminate.

Equation 10-1

J.=1=,1:']'+4:Ix+h

Such equations are said to be cubic, or of degree 3, because the highest exponent they contain is a 3. Also included in the definition of an
elliptic curve is a single element denoted O and called the point at infinity or the zero point, which we discuss subsequently. To plot such a
curve, we need to compute

;.:=Vf,r3+ax+b

For given values of a and b, the plot consists of positive and negative values ofy for each value ofx. Thus each curve is symmetric abouty
. shows two examples of elliptic curves. As you can see, the formula sometimes produces weird-looking curves.



Figure 10.9. Example of Elliptic Curves
(This item is displayed on page 304 in the print version)
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Now, consider the set of points E(a, b) consisting of all of the points , y) that satisfy Equation (10.1) together with the elementO. Using a
different value of the pair (a, b) results in a different set E@, b). Using this terminology, the two curves i depict the sets E(1,0)
and E(1, 1), respectively.

Geometric Description of Addition

It can be shown that a group can be defined based on the set E(a, b) for specific values of aandb in , provided the
following condition is met:

Equation 10-2

da’ + 27H2 £ 0

o define the group, we must define an operation, called addition and denoted by +, for the set E(a, b), where a and b satisfy
10.2). In geometric terms, the rules for addition can be stated as follows: If three points on an elliptic curve lie on a straight line, their sum is
O. From this definition, we can define the rules of addition over an elliptic curve:

1. O serves as the additive identity. ThusO = O; for any pointP on the elliptic curve, P + O = P. In what follows, we assume P ¢

OandQ #o.
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2. The negative of a point P is the point with the samex coordinate but the negative of they coordinate; that is, ifP = (x, y), thenP =
(X, y). Note that these two points can be joined by a vertical line. Note tha® + (P) = PP = O.

3. To add two points P and Q with different x coordinates, draw a straight line between them and find the third point of intersection
R. It is easily seen that there is a unique poinR that is the point of intersection (unless the line is tangent to the curve at eitheiP
or Q, in which case we takeR = P or R = Q, respectively). To form a group structure, we need to define addition on these three

points as follows: P + Q = R. That is, we defineP + Q to be the mirror image (with respect to thex axis) of the third point of
intersection. . illustrates this construction.
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4. The geometric interpretation of the preceding item also applies to two points,P and P, with the samex coordinate. The
points are joined by a vertical line, which can be viewed as also intersecting the curve at the infinity point. We therefore have P
+ ( P) = O, consistent with item (2).

5. To double a point Q, draw the tangent line and find the other point of intersectiorS. ThenQ + Q =2Q = S.



With the preceding list of rules, it can be shown that the set E(a, b) is an abelian group.

Algebraic Description of Addition

For two distinct pointsP = (xp, YP)
and Q = (xQ, yQ) that are not negatives of each other, the slope of the liné that joins them isD = (yQ yp). There is exactly one other point

In this subsection we present some results that enable calculation of additions over elliptic curves.

where | intersects the elliptic curve, and that is the negative of the sum of and Q. After some algebraic manipulation, we can express the
sum R =P + Q as follows:

4 For derivations of these results, see KOBL94] or other mathematical treatments of elliptic curves.

Equation 10-3

g

_T_II'{ - ﬁ‘- o .rp T .I'”

Y=y AR XR)

We also need to be able to add a point to itself: P + P = 2P = R. Whenyp io, the expressions are

Equation 10-4

3k + a2
Xp = T — 2xp
= 31’% + a B o
YR = N (xp — xg) — yp
e

Elliptic Curves over Z,

Elliptic curve cryptography makes use of elliptic curves in which the variables and coefficients are all restricted to elements of a finite field.

Two families of elliptic curves are used in cryptographic applications: prime curves over Zp and binary curves over GF(én). For a prime
curve over Zp, we use a cubic equation in which the variables and coefficients all take on values in the set of integers from 0 through 1 and

in which calculations are performed modulo p. For a binary curve defined over GF(fn), the variables and coefficients all take on values in

GF(Zn) and in calculations are performed over GF(E). [EERN99] points out that prime curves are best for software applications, because
the extended bit-fiddling operations needed by binary curves are not required; and that binary curves are best for hardware applications,



where it takes remarkably few logic gates to create a powerful, fast cryptosystem. We examine these two families in this section and the
next.

There is no obvious geometric interpretation of elliptic curve arithmetic over finite fields. The algebraic interpretation used for elliptic curve
arithmetic over real numbers does readily carry over, and this is the approach we take.
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For elliptic curves over Zp, as with real numbers, we limit ourselves to equations of the form ofquation (10.1), but in this case with
coefficients and variables limited to Zp:

Equation 10-5

yvimodp = (x + ax + b) mod p

For example, is satisfied fora=1,b=1,x=9,y=9,y=7,p=23:

72 mod 23 = (93+ 9+ 1) mod 23
49 mod 23 =739 mod 23

3 =3

Now consider the set Ep (a, b) consisting of all pairs of integers , y) that satisfy , together with a point at infinityO. The

coefficients a and b and the variablesx andy are all elements of Z.

%ii fff?? E let p = 23 and consider the elliptic curvey2 = x3 +x + 1. In this case,a = b = 1. Note that this equation is the same as that of
FFigure 10.94. The figure shows a continuous curve with all of the real points that satisfy the equation. For the set £3(1, 1), we are only
interested in the nonnegative integers in the quadrant from (0, 0) through (p 1, p 1) that satisfy the equation modp lists the
points (other than O) that are part of E23(1,1). plots the points of E23(1,1); note that the points, with one exception, are
symmetric abouty = 11.5.

Table 10.1. Points on the Elliptic Curve Ey3(1,1)

©, 1) (6, 4) (12, 19)
©, 22) (6, 19) (13,7)
€7 (7, 11) (13, 16)
(1, 16) (7. 12) 17, 3)
@3, 10) ©9,7) (17, 20)
3, 13) (9, 16) (18, 3)

(4,0) (11, 3) (18, 20)



(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Figure 10.10. The Elliptic Curve E»3(1,1)
(This item is displayed on page 307 in the print version)
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It can be shown that a finite abelian group can be defined based on the set Ep(a, b) provided that (x3 + ax + b) mod p has no repeated
factors. This is equivalent to the condition



Equation 10-6

(4a” + 276*) mod p # 0 mod p

Note that Equation (10.6) has the same form asfgquation (10.2).

The rules for addition over Ep(a, b) correspond to the algebraic technique described for elliptic curves defined over real number. For all
points P, Q E Ep(a, b);

1. P+O=P.

2. If P=(xp,yP) thenP + (xpP, yP) = O. The point (xpP, yP) is the negative of P, denoted asP. For example, in 23(1,1), for P =
(13,7), we have P = (13, 7). But 7 mod 23 = 16. Therefore,P = (13, 16), which is also in E23(1,1).
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3. IfP=(xP,yQ) and Q = (xQ, yQ) with P i Q, thenR =P + Q = (XR, YR) is determined by the following rules:

XR = (I2 XP XQ) mod p

YR = (I(xP xR) yP) mod p

where
4
Yo — ¥p .
o il modp ifFP #0
IEI = IP
A= 5
3xp + a -
—— modp P =0
\ 2yp

4. Multiplication is defined as repeated addition; for example, 4P =P +P + P + P.

For example, let P = (3,10) and Q = (9,7) inE23(1,1). Then

7 — -3 —
A= r‘; mod 23 = ? mod 23 = T] mod 23 = 11

XR = (112 3 9) mod 23 = 17

YR = (11(3 17) 10) mod 23 = 164 mod 23 = 20
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So P + Q= (17, 20). To find 2P,

B 3[.‘-12]+1 . 5 7 - 1 5
s Wmﬂd 3 = Enmd_.— Em{:d 3=6

The last step in the preceding equation involves taking the multiplicative inverse of 4 in Z23. This can be done using the extended
Euclidean algorithm defined in . To confirm, note that (6 x 4) mod 23 = 24 mod 23 = 1.

XR =(6233) mod 23 =30 mod 23 =7
YR = (6(3 7) 10) mod 23 = ( 34) mod 23 = 12
and 2P = (7, 12).

For determining the security of various elliptic curve ciphers, it is of some interest to know the number the number of points in a finite
abelian group defined over an elliptic curve. In the case of the finite group Ep(a,b), the number of pointsN is bounded by

p+1-2Vp=N=p+1+2Vp

Note that the number of points in Ep(a, b) is approximately equal to the number of elements in Z, namely p elements.

Elliptic Curves over GF(Zm)

Recall from that a finite field GF(fn) consists of 2" elements, together with addition and multiplication operations that can be
defined over polynomials. For elliptic curves over GF(Zm), we use a cubic equation in which the variables and coefficients all take on

values in GF(Zm), for some numberm, and in which calculations are performed using the rules of arithmetic in GF(@).

It turns out that the form of cubic equation appropriate for cryptographic applications for elliptic curves is somewhat different for GF(Zm)
than for Zp. The form is

Equation 10-7

yV+xy=x+ax*+b

where it is understood that the variables x andy and the coefficientsa and b are elements of GF({n) of and that calculations are performed

in GF2™M).

Now consider the set E2™(a, b) consisting of all pairs of integers , y) that satisfy , together with a point at infinityO.

For example, let us use the finite field GF(24) with the irreducible polynomialf(x) = x4 + x + 1. This yields a generator that satisfiesf(g) = 0,



with a value of g4 =g+ 1, or in binary 0010. We can develop the powers ofg as follows:

¢° = 0001 o' = 0011
91 =0010 95 =0110
92 = 0100 g6 =1100
g3 =1000 g7 =1011

For example, g5 = (g4)(g) = 92 +g=0110.

®=o0101 g2 = 1111
g = 1010 g% = 1101
910 =0111 gl4 =1001
g = 1110 o™® = o001

Now consider the elliptic curve y2 +Xy = x3 + g4x2 + 1.

@+ (@@ = @+ @D+ 1

6, 8_ 15 14
g +g =g +g +1

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001
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In this casea = g4 andb = go = 1. One point that satisfies this equation is g5, g3):

able 10.4 lists the points (other thanO) that are part of E24(g4, 1). plots the points of E24(g4, 1).

Table 10.2. Points on the Elliptic Curve Ex* (g4, 1)

0.1

@)
)
@

(93, 913)

(95, 93)
&g
gG’ 98)
@ g™

(99, 910)

(99, 913)

@™, 9

(910, 98)

(6*2.0)

12 12

(g7.9)

Figure 10.11. The Elliptic Curve E24(g4, 1)
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It can be shown that a finite abelian group can be defined based on the set E2m(a, b), provided thatb #O. The rules for addition can be
stated as follows. For all points P, Q E E2"(a, b):

1

2.

P+0=P.

If P=(xP, yP), thenP + (xP, xp + yP) = O. The point (xP, XP + yP) is the negative of P, denoted asP.

[Page 310]
IfP = (xP, yP) and Q = (xQ, yQ) with P # QandP #Q, thenR =P + Q = (XR, YR) is determined by the following rules:

XR=12+1+xp+xQ+a

YR =I(XP + XR) + XR +yP

where

_Yg T )r
Xp + Xp

A



4.

If = (xP, yP) then R = 2P = (XR, YR) is determined by the following rules:

.T;-=3;2‘|':"1+H

%

yr = xp + (A + 1)xg

where
Yr
..l:'l. - _l'r} +
Ap
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10.4. Elliptic Curve Cryptography

The addition operation in ECC is the counterpart of modular multiplication in RSA, and multiple addition is the counterpart of modular
exponentiation. To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the
product of two primes or taking the discrete logarithm.

Consider the equation Q = kP where Q, P E Ep(a, b) and k < p. It is relatively easy to calculateQ givenk and P, but it is relatively hard to
determine k given Q and P. This is called the discrete logarithm problem for elliptic curves.

We give an example taken from the Certicom Web site (llvww.certicom.corrl). Consider the group E23(9, 17). This is the group defined by

the equation y2 mod 23 = (x3 + 9x + 17) mod 23. What is the discrete logarithmk of Q = (4, 5) to the baseP = (16.5)? The brute-force
method is to compute multiples of P until Q is found.

Thus
P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = (7, 3); P = (8, 7); & (12, 17); 9P = (4, 5).

Because 9P = (4, 5) =Q, the discrete logarithm Q = (4, 5) to the baseP = (16, 5) isk = 9. In a real application,k would be so large as to
make the brute-force approach infeasible.

In the remainder of this section, we show two approaches to ECC that give the flavor of this technique.

Analog of Diffie-Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner. First pick a large integer g, which is either a prime numberp or an
integer of the form M and elliptic curve parametersa and b forEguation (10.5* orEguation (10.7*. This defines the elliptic group of points

Eq(a, b). Next, pick abase point G = (x1, y1) in Ep(a, b) whose order is a very large valuen. The order n of a pointG on an elliptic curve is
the smallest positive integer n such thatnG = O. Eq(a, b) and G are parameters of the cryptosystem known to all participants.
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A key exchange between users A and B can be accomplished as follows ):

1. A selects an integer nA less thann. This is A's private key. A then generates a public keyPA = nA x G; the public key is a point in
Eq(a, b).

2. B similarly selects a private key ng and computes a public keyPB.

3. A generates the secret key K = nA x PB. B generates the secret keyK = nB x PA.

Figure 10.12. ECC Diffie-Hellman Key Exchange


http://www.certicom.com

The two calculations in step 3 produce the same result because
NAXPB=nAX (NBXxG)=nBx (NAXG)=nBxPA

To break this scheme, an attacker would need to be able to compute k given G and kG, which is assumed hard.
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As an example take p = 211; Bp(0, 4), which is equivalent to the curvey2 = x3 4; and G = (2, 2). One can calculate that 24@G = O. A's
private key is nA = 121, so A's public key isPA = 121(2, 2) = (115, 48). B's private key isnB = 203, so B's public key is 203(2, 2) = (130,
203). The shared secret key is 121(130, 203) = 203(115, 48) = (161, 69).

BI provided by Ed Schaefer of Santa Clara University.

Note that the secret key is a pair of numbers. If this key is to be used as a session key for conventional encryption, then a single number
must be generated. We could simply use the x coordinates or some simple function of thex coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been analyzed in the literature. In this subsection we look at
perhaps the simplest. The first task in this system is to encode the plaintext message m to be sent as anx-y point Pm. It is the pointPm
that will be encrypted as a ciphertext and subsequently decrypted. Note that we cannot simply encode the message as the x ory
coordinate of a point, because not all such coordinates are in Eqg(a, b); for example, see. Again, there are several approaches
to this encoding, which we will not address here, but suffice it to say that there are relatively straightforward techniques that can be used.

As with the key exchange system, an encryption/decryption system requires a point G and an elliptic group Ej(a, b) as parameters. Each
user A selects a private key nA and generates a public keyPA = nA x G.

To encrypt and send a message Pm to B, A chooses a random positive integeik and produces the ciphertextCm consisting of the pair of
points:

Cm = {kG, Pm + kPB}

Note that A has used B's public key PB. To decrypt the ciphertext, B multiplies the first point in the pair by B's secret key and subtracts the
result from the second point:

Pm + kPB nB(kG) = Pm + k(nBG) nB(kG) = Pm

A has masked the message Pm by adding kPB to it. Nobody but A knows the value ofk, so even thoughPB is a public key, nobody can
remove the mask kPB. However, A also includes a “clue," which is enough to remove the mask if one knows the private keyB. For an
attacker to recover the message, the attacker would have to compute k given G and kG, which is assumed hard.

As an example of the encryption process (taken from [), take p = 751; Ep(1, 188), which is equivalent to the curvey2 = x3 X +188;
and G = (0, 376). Suppose that A wishes to send a message to B that is encoded in the elliptic poifim = (562, 201) and that A selects the
random number k = 386. B's public key isPB = (201, 5). We have 386(0, 376) = (676, 558), and (562, 201) + 386(201, 5) = (385, 328).
Thus A sends the cipher text {(676, 558), (385, 328)}.

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P. This is referred to as the elliptic curve logarithm problem.
The fastest known technique for taking the elliptic curve logarithm is known as the Pollard rho method. compares various
algorithms by showing comparable key sizes in terms of computational effort for cryptanalysis. As can be seen, a considerably smaller key
size can be ysed for ECC compared to RSA. Furthermore, for equal key lengths, the computational effort required for ECC and RSA is
comparable [. Thus, there is a computational advantage to using ECC with a shorter key length than a comparably secure RSA.
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Table 10.3. Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis

Symmetric Scheme (key size in bits)

ECC-Based Scheme (size of n in bits)

RSA/DSA (modulus size in bits)

56

80

112

128

92

256

Source: Certicom

112

160

224

256

384

512

512

1024

2048

3072

7680

15360

NEXT B
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10.5. Recommended Reading and Web Sites

A quite readable trﬂof elliptic curve cryptography is [ROSI99]; the emphasis is on software implementation. Another readable, but

ri ook is [IHANKO . Two other good treatments, both of whi tain_ some rather stiff mathematics, argBLAK99] and
ENGEQEE. Therﬂo goocre concise descriptions in [KUMA9{], [ETINOZ], and [KOBL94]. Two interesting survey

treatments are dFERNQ and [PURI9T.

BLAK9Y Blake, |.; Seroussi, G.; and Smart, N.Elliptic Curves in Cryptography. Cambridge: Cambridge
University Press, 1999.

NGE99 Enge, A. Elliptic Curves and Their Applications to Cryptography. Norwell, MA: Kluwer Academic
Publishers, 1999.

ERN99 Fernandes, A. "Elliptic Curve Cryptography."Dr. Dobb's Journal, December 1999.

ANKO04 Hankerson, D.; Menezes, A.; and Vanstone, S.Guide to Elliptic Curve Cryptography. New York:
Springer, 2004.

URI97 Jurisic, A., and Menezes, A. "Elliptic Curves and Cryptography.'Dr. Dobb's Journal, April 1997.
OBL94 Koblitz, N. A Course in Number Theory and Cryptography New York: Springer-Verlag, 1994.

UMA98 Kumanduri, R., and Romero, C.Number Theory with Computer Applications. Upper Saddle River, NJ:
Prentice Hall, 1998.

ROSI99 Rosing, M. Implementing Elliptic Curve Cryptography. Greeenwich, CT: Manning Publications, 1999.

STINOZ Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2002.
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§ Recommended Web Site

® Certicom: Extensive collection of technical material on elliptic curve cryptography and other topics in cryptography
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10.6. Key Terms, Review Questions, and Problems

Key Terms
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Review Questions

10.1 What are two different uses of public-key cryptography related to key distribution?
10.2 List four general categories of schemes for the distribution of public keys.

10.3 What are the essential ingredients of a public-key directory?

10.4 What is a public-key certificate?

10.5 What are the requirements for the use of a public-key certificate scheme?

10.6 Briefly explain Diffie-Hellman key exchange.

10.7 What is an elliptic curve?

10.8 What is the zero point of an elliptic curve?

10.9 What is the sum of three points on an elliptic curve that lie on a straight line?

Problems

10.1 Users A and B use the Diffie-Hellman key exchange technique with a common prime g = 71 and a primitive
roota=7.

a. If user A has private keyXA = 5, what is A's public key YA?
b. If user B has private keyXB = 12, what is B's public key YB?

c. What is the shared secret key?

10.2 Consider a Diffie-Hellman scheme with a common primeq = 11 and a primitive roota = 2.
a. Show that 2 is a primitive root of 11.
b. If user A has public keyYA = 9, what is A's private key XA?

c. Ifuser B has public keyYB = 3, what is the shared secret keyK, shared with A?



10.3

10.4

10.5

10.6

10.7

e .. .. X
In the Diffie-Hellman protocol, each participant selects a secret number x and sends the other participanta

mod g for some public numbera. What would happen if the participants sent each otherxa for some public
number a instead? Give at least one method Alice and Bob could use to agree on a key. Can Eve break your
system without finding the secret numbers? Can Eve find the secret numbers?
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This problem illustrates the point that the Diffie-Hellman protocol is not secure without the step where you
take the modulus; i.e. the "Indiscrete Log Problem" is not a hard problem! You are Eve, and have captured
Alice and Bob and imprisoned them. You overhear the following dialog.

Bob: Oh, let's not bother with the prime in the Diffie-Hellman protocol, it will make things easier.
Alice: Okay, but we still need a base to raise things to. How about g = 3?

Bob: All right, then my result is 27.

Alice: And mine is 243.

What is Bob's secret XB and Alice's secret XA? What is their secret combined key? (Don't forget to show your
work.)

describes a man-in-the-middle attack on the Diffie-Hellman key exchange protocol in which the
adversary generates two public-private key pairs for the attack. Could the same attack be accomplished with
one pair? Explain.

In 1985, T. ElIGamal announced a public-key scheme based on discrete logarithms, closely related to the
Diffie-Hellman technique. As with Diffie-Hellman, the global elements of the EIGamal scheme are a prime
number g and a, a primitive root of g. A user A selects a private keyXA and calculates a public keyYA as in
Diffie-Hellman. User A encrypts a plaintext M < q intended for user B as follows:

1. Choose a random integerk such that 1 === Kk == q 1.

2. ComputeK = (YB)k mod g.

3. Encrypt M as the pair of integers C1, C2) where

C1=ak modq C2=KM modq

User B recovers the plaintext as follows:
XB
1. ComputeK=(C1)" "~ modgq.

2. Compute M = (CzK]) mod g.

Show that the system works; that is, show that the decryption process does recover the plaintext.

Consider an EIGamal scheme with a common primeq = 71 and a primitive roota = 7
a. If B has public keyYB = 3 and A chose the random integekk = 2, what is the ciphertext of M = 30?

b. If Anow chooses a different value of k, so that the encoding ofM =30 is C = (59, C2), what is the
integer C27?



10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

10.16

10.17

Rule (5) for doing arithmetic in elliptic curves over real numbers states that to double a point Q, draw the
tangent line and find the other point of intersection S. ThenQ + Q = 2Q = S. If the tangent line is not vertical,
there will be exactly one point of intersection. However, suppose the tangent line is vertical? In that case,
what is the value 2Q? What is the value 3Q7?

Demonstrate that the two elliptic curves of each satisfy the conditions for a group over the real
numbers.

Is (4,7) a point on the elliptic CUTVQ/Z = x3 5x + 5 over real numbers?

On the elliptic curve over the real numbergl2 = x3 36x, letP = (3.5, 9.5) and Q = (2.5, 8.5). FindP + Q and 2P.
. . 2_ 3 .

Does the elliptic curve equationy” =x~ + 10x + 5 define a group over 477

Consider the elliptic curve E11(1, 6); that is, the curve is defined bwz = x3 + X + 6 with a modulus ofp = 11.
Determine all of the points in E11(1, 6). Hint: Start by calculating the right-hand side of the equation for all
values of x.

What are the negatives of the following elliptic curve points over 27? P = (5, 8); Q = (3, 0); R = (0, 6).

For E11(1, 6), consider the pointG = (2, 7). Compute the multiples ofG from 2G through 13G.
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This problem performs elliptic curve encryption/decryption using the scheme outlined in . The
cryptosystem parameters are E11(1, 6) andG = (2, 7). B's secret key isng = 7.

a. Find B's public keyPB.

b. A wishes to encrypt the message Pm = (10, 9) and chooses the random valuek = 3. Determine
the ciphertext Cm.

c. Show the calculation by which B recoversPm from Cm.

The following is a first attempt at an Elliptic Curve signature scheme. We have a global elliptic curve, prime p,
and "generator" G. Alice picks a private signing keyXA and forms the public verifying keyYA = XAG. To sign a
message M:

® Alice picks a valuek.
® Alice sends BobM, k and the signature S = M kXAG.

® Bopb verifies thatM = S + kYA

a. Show that this scheme works. That is, show that the verification process produces an equality if
the signature is valid.

b. Show that the scheme is unacceptable by describing a simple technique for forging a user's
signature on an arbitrary message.



10.18 Here is an improved version of the scheme given in the previous problem. As before, we have a global
elliptic curve, prime p, and "generator" G. Alice picks a private signing keyXA and forms the public verifying
key YA = XAG. To sign a messageM,

® oD picks a valuek.
® Bop sends AliceC1 = kG.

® Alice sends BobM and the signature S = M XAC1-

® Bop verifies thatM = S + kYA

a. Show that this scheme works. That is, show that the verification process produces an equality if
the signature is valid.

b. Show that forging a message in this scheme is as hard as breaking (ElGamal) Elliptic Curve
Cryptography. (Or find an easier way to forge a message?)

c. This scheme has an extra "pass" compared to other cryptosystems and signature schemes we
have looked at. What are some drawbacks to this?

e prey NExT
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At cats' green on the Sunday he took the message from the inside of the pillar and added Peter Moran's name to
the two names already printed there in the "Brontosaur" code. The message now read: "Leviathan to Dragon:
Martin Hillman, Trevor Allan, Peter Moran: observe and tail." What was the good of it John hardly knew. He felt
better, he felt that at last he had made an attack on Peter Moran instead of waiting passively and effecting no
retaliation. Besides, what was the use of being in possession of the key to the codes if he never took advantage of
it

-~

Talking to Strange Men, Ruth Rendell

Key Points

® Message authentication is a mechanism or service used to verify the integrity of a message. Message
authentication assures that data received are exactly as sent by (i.e., contain no modification, insertion,
deletion, or replay) and that the purported identity of the sender is valid.

L4 Symmetric encryption provides authentication among those who share the secret key. Encryption of a
message by a sender's private key also provides a form of authentication.

® The two most common cryptographic technigues for message authentication are a message authentication
code (MAC) and a secure hash function.

® AMACIsan algorithm that requires the use of a secret key. A MAC takes a variable-length message and a
secret key as input and produces an authentication code. A recipient in possession of the secret key can
generate an authentication code to verify the integrity of the message.

® A hash function maps a variable-length message into a fixed length hash value, or message digest. For
message authentication, a secure hash function must be combined in some fashion with a secret key.




Perhaps the most confusing area of network security is that of message authentication and the related topic of digital signatures. The
attacks and countermeasures become so convoluted that practitioners in this area begin to remind one of the astronomers of old, who
built epicycles on top of epicycles in an attempt to account for all contingencies. Fortunately, it appears that today's designers of
cryptographic protocols, unlike those long-forgotten astronomers, are working from a fundamentally sound model.

It would be impossible, in anything less than book length, to exhaust all the cryptographic functions and protocols that have been
proposed or implemented for message authentication and digital signatures. Instead, the purpose of this chapter and the next two is to
provide a broad overview of the subject and to develop a systematic means of describing the various approaches.
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This chapter begins with an introduction to the requirements for authentication and digital signature and the types of attacks to be
countered. Then the basic approaches are surveyed, including the increasingly important area of secure hash functions. Specific hash
functions are examined in

E=a wExT
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[Page 319 (continued)]

11.1. Authentication Requirements

In the context of communications across a network, the following attacks can be identified:
1. Disclosure: Release of message contents to any person or process not possessing the appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-oriented application, the frequency and
duration of connections could be determined. In either a connection-oriented or connectionless environment, the number and
length of messages between parties could be determined.

3. Masquerade: Insertion of messages into the network from a fraudulent source. This includes the creation of messages by an
opponent that are purported to come from an authorized entity. Also included are fraudulent acknowledgments of message
receipt or nonreceipt by someone other than the message recipient.

4. Content modification: Changes to the contents of a message, including insertion, deletion, transposition, and modification.

5. Sequence modification: Any modification to a sequence of messages between parties, including insertion, deletion, and
reordering.

6. Timing modification: Delay or replay of messages. In a connection-oriented application, an entire session or sequence of
messages could be a replay of some previous valid session, or individual messages in the sequence could be delayed or
replayed. In a connectionless application, an individual message (e.g., datagram) could be delayed or replayed.

7. Source repudiation: Denial of transmission of message by source.
8. Destination repudiation: Denial of receipt of message by destination.

Measures to deal with the first two attacks are in the realm of message confidentiality and are dealt with in Part One. Measures to deal
with items 3 through 6 in the foregoing list are generally regarded as message authentication. Mechanisms for dealing specifically with
item 7 come under the heading of digital signatures. Generally, a digital signature technique will also counter some or all of the attacks
listed under items 3 through 6. Dealing with item 8 may require a combination of the use of digital signatures and a protocol designed to
counter this attack.

In summary, message authentication is a procedure to verify that received messages come from the alleged source and have not been
altered. Message authentication may also verify sequencing and timeliness. A digital signature is an authentication technique that also
includes measures to counter repudiation by the source.

" prey wEXT
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11.2. Authentication Functions

Any message authentication or digital signature mechanism has two levels of functionality. At the lower level, there must be some
sort of function that produces an authenticator: a value to be used to authenticate a message. This lower-level function is then used as a
primitive in a higher-level authentication protocol that enables a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to produce an authenticator. These may be grouped into three
classes, as follows:

® \essage encryption: The ciphertext of the entire message serves as its authenticator

® l\/lessaqe authentication code (MAC{: A function of the message and a secret key that produces a fixed-length value that
serves as the authenticator

L] A function that maps a message of any length into a fixed-length hash value, which serves as the authenticator

We now briefly examine each of these topics; MACs and hash functions are then examined in greater detail in and .

Message Encryption

Message encryption by itself can provide a measure of authentication. The analysis differs for symmetric and public-key encryption
schemes.

Symmetric Encryption

Consider the straightforward use of symmetric encryption ). A message M transmitted from source A to destination B is
encrypted using a secret key K shared by A and B. If no other party knows the key, then confidentiality is provided: No other party can
recover the plaintext of the message.

Figure 11.1. Basic Uses of Message Encryption
(This item is displayed on page 321 in the print version)
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(d) Public-key encryphion: confidentiality, authentication, and signature

In addition, we may say that B is assured that the message was generated by A. Why? The message must have come from A because A
is the only other party that possesses K and therefore the only other party with the information necessary to construct ciphertext that can
be decrypted with K. Furthermore, ifM is recovered, B knows that none of the bits ofM have been altered, because an opponent that does
not know K would not know how to alter bits in the ciphertext to produce desired changes in the plaintext.

So we may say that symmetric encryption provides authentication as well as confidentiality. However, this flat statement needs to be
qualified. Consider exactly what is happening at B. Given a decryption function D and a secret key K, the destination will acceptany input X
and produce output Y = D(K, X). If X is the ciphertext of a legitimate messageM produced by the corresponding encryption function, thenY
is some plaintext message M. Otherwise, Y will likely be a meaningless sequence of bits. There may need to be some automated means
of determining at B whether Y is legitimate plaintext and therefore must have come from A.

The implications of the line of reasoning in the preceding paragraph are profound from the point of view of authentication. Suppose the
message M can be any arbitrary bit pattern. In that case, there is no way to determine automatically, at the destination, whether an
incoming message is the ciphertext of a legitimate message. This conclusion is incontrovertible: If M can be any bit pattern, then
regardless of the value of X, the value Y = D(K, X) is some bit pattern and therefore must be accepted as authentic plaintext.
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Thus, in general, we require that only a small subset of all possible bit patterns be considered legitimate plaintext. In that case, any
spurious ciphertext is unlikely to produce legitimate plaintext. For example, suppose that only one bit pattern in 106 is legitimate plaintext.

Then the probability that any randomly chosen bit pattern, treated as ciphertext, will produce a legitimate plaintext message is only 10_6.

For a number of applications and encryption schemes, the desired conditions prevail as a matter of course. For example, suppose that we
are transmitting English-language messages using a Caesar cipher with a shift of one (K = 1). A sends the following legitimate ciphertext:

nbsftfbupbutboeepftfbupbutboemjuumfmbnctfbujwz

B decrypts to produce the following plaintext:

mareseatoatsanddoeseatoatsandlittlelambseativy
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A simple frequency analysis confirms that this message has the profile of ordinary English. On the other hand, if an opponent generates
the following random sequence of letters:

zuvrsoevgqxlzwigamdvnmhpmeccexiuureosfbcebtgxsxq

this decrypts to:

ytugrndufpwkyvhfzlcumlgolbbwhttgdnreabdaspwrwp

which does not fit the profile of ordinary English.

It may be difficult to determine automatically if incoming ciphertext decrypts to intelligible plaintext. If the plaintext is, say, a binary object
file or digitized X-rays, determination of properly formed and therefore authentic plaintext may be difficult. Thus, an opponent could
achieve a certain level of disruption simply by issuing messages with random content purporting to come from a legitimate user.

One solution to this problem is to force the plaintext to have some structure that is easily recognized but that cannot be replicated without
recourse to the encryption function. We could, for example, append an error-detecting code, also known as a frame check sequence
(FCS) or checksum, to each message before encryption, as illustrated in fFigure 11.2g. A prepares a plaintext messageM and then
provides this as input to a function F that produces an FCS. The FCS is appended to M and the entire block is then encrypted. At the
destination, B decrypts the incoming block and treats the results as a message with an appended FCS. B applies the same function F to
attempt to reproduce the FCS. If the calculated FCS is equal to the incoming FCS, then the message is considered authentic. It is unlikely
that any random sequence of bits would exhibit the desired relationship.

Figure 11.2. Internal and External Error Control
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e fiaure 11.2d s

). With internal error

Note that the order in which the FCS and encryption functions are performed is critical. The sequence jllu
referred to in [ as internal error control, which the authors contrast with external error controll
control, authentication is provided because an opponent would have difficulty generating ciphertext that, when decrypted, would have valid
error control bits. If instead the FCS is the outer code, an opponent can construct messages with valid error-control codes. Although the
opponent cannot know what the decrypted plaintext will be, he or she can still hope to create confusion and disrupt operations.

An error-control code is just one example; in fact, any sort of structuring added to the transmitted message serves to strengthen the
authentication capability. Such structure is provided by the use of a communications architecture isting of layered protocols. As an
example, consider the structure of messages transmitted using the TCP/IP protocol architecture. Ei:ure 11.3 shows the format of a TCP
segment, illustrating the TCP header. Now suppose that each pair of hosts shared a unique secret key, so that all exchanges between a
] ts used the same key, regardless of application. Then we could simply encrypt all of the datagram except the IP header (see
Eigure 7.9). Again, if an opponent substituted some arbitrary bit pattern for the encrypted TCP segment, the resulting plaintext would not
include a meaningful header. In this case, the header includes not only a checksum (which covers the header) but also other useful
information, such as the sequence number. Because successive TCP segments on a given connection are numbered sequentially,
encryption assures that an opponent does not delay, misorder, or delete any segments.

Figure 11.3. TCP Segment
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Public-Key Encryption

The straightforward use of public-key encryption ) provides confidentiality but not authentication. The source (A) uses the
public key PUp of the destination (B) to encrypt M. Because only B has the corresponding private keyPRb, only B can decrypt the
message. This scheme provides no authentication because any opponent could also use B's public key to encrypt a message, claiming to
be A.
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To provide authentication, A uses its private key to encrypt the message, and B uses A's public key to decryp ). This
provides authentication using the same type of reasoning as in the symmetric encryption case: The message must have come from A
because A is the only party that possesses PRa and therefore the only party with the information necessary to construct ciphertext that can
be decrypted with PUa. Again, the same reasoning as before applies: There must be some internal structure to the plaintext so that the
receiver can distinguish between well-formed plaintext and random bits.

Assumingere is such structure, then the scheme of does provide authentication. It also provides what is known as digital

signature. L Only A could have constructed the ciphertext because only A possessed?Ra. Not even B, the recipient, could have
constructed the ciphertext. Therefore, if B is in possession of the ciphertext, B has the means to prove that the message must have come
from A. In effect, A has "signed" the message by using its private key to encrypt. Note that this scheme does not provide confidentiality.

Anyone in possession of A's public key can decrypt the ciphertext.
W This is not the way in which digital signatures are constructed, as we shall see, but the principle is the same.

To provide both confidentiality and authentication, A can encrypt M first using its private key, which provides the digital signature, and then
using B's public key, which provides confidentiality (). The disadvantage of this approach is that the public-key algorithm,
which is complex, must be exercised four times rather than two in each communication.

able 11.1f summarizes the confidentiality and authentication implications of these various approaches to message encryption.



11.
(This item is displayed on page 325 in the print version)

Table 11.1. Confidentiality and Authenticatiolications of Message Encryption (see

A—} B:E(K, M)

*Provides confidentiality

Only A and B shareK

*Provides a degree of authentication

Could come only from A
Has not been altered in transit

Requires some formatting/redundancy
«Does not provide signature

Receiver could forge message

Sender could deny message

(a) Symmetric encryption
A —} B:E(PUp, M)

« Provides confidentiality

Only B hasPRp to decrypt

« Provides no authentication

Any party could use PUp to encrypt message and claim to be A

(b) Public-key (asymmetric) encryption: confidentiality
A —} B:E(PRa, M)

« Provides authentication and signature

Only A hasPRp to encrypt
Has not been altered in transit

Requires some formatting/redundancy

Any party can use PUg to verify signature



A — B:E(PUb, E(PRa, M))
« Provides confidentiality because of PUp
« Provides authentication and signature because ofPRa

(d) Public-key encryption: confidentiality, authentication, and signature

Message Authentication Code

An alternative authentication technique involves the use of a secret key to generate a small fixed-size block of data, known as a
cryptographic checksum or MAC that is appended to the message. This technique assumes that two communicating parties, say A and B,
share a common secret key K. When A has a message to send to B, it calculates the MAC as a function of the message and the key:MAC
= C(K, M), where

M  =input message
C = MAC function

K = shared secret key

MAC = message authentication code

The message plus MAC are transmitted to the intended recipient. The recipient performs the same calculatio] ived message,
using the same secret key, to generate a new MAC. The received MAC is compared to the calculated MAC (Eigure 11.44). If we assume
that only the receiver and the sender know the identity of the secret key, and if the received MAC matches the calculated MAC, then

1. The receiver is assured that the message has not been altered. If an attacker alters the message but does not alter the MAC,
then the receiver's calculation of the MAC will differ from the received MAC. Because the attacker is assumed notto know the
secret key, the attacker cannot alter the MAC to correspond to the alterations in the message.
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2. The receiver is assured that the message is from the alleged sender. Because no one else knows the secret key, no one else
could prepare a message with a proper MAC.

3. If the message includes a sequence number (such as is used with HDLC, X.25, and TCP), then the receiver can be assured of
the proper sequence because an attacker cannot successfully alter the sequence number.

[Page 326]

Figure 11.4. Basic Uses of Message Authentication Code (MAC)
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A MAC function is similar to encryption. One difference is that the MAC algorithm need not be reversible, as it must for decryption. In
general, the MAC function is a many-to-one function. The domain of the function consists of messages of some arbitrary length, whereas

the range consists of all possible MACs and all possible keys. If an n-bit MAC is used, then there are 5' possible MACs, whereas there are

N possible messages withN >> 7 Furthermore, with ak-bit key, there are é( possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC. Then, there are a total of 2lOO different messages but only

%00/210

210 different MACs. So, on average, each MAC value is generated by a total of = 290 different messages. If a 5-bit key is used,

then there are 25 = 32 different mappings from the set of messages to the set of MAC values.

It turns out that because of the mathematical properties of the authentication function, it is less vulnerable to being broken than encryption.

The process depicted in provides authentication but not confidentiality, because the message asansmitted in the

clear. Confidentiality can be provided by performing message encryption either after (gigure 11.44) or before (Eigure 11.44d) the MAC
algorithm. In both these cases, two separate keys are needed, each of which is shared by the sender and the receiver. In the first case,
the MAC is calculated with the message as input and is then concatenated to the message. The entire block is then encrypted. In the
second case, the message is encrypted first. Then the MAC is calculated using the resulting ciphertext and is concatenated to the
ciphertext to form the transmitted block. Typically, it is preferable to tie the authentication directly to the plaintext, so the method of
[11.41 is used.
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Because symmetric encryption will provide authentication and | e it is widely used with readily available products, why not simply
use this instead of a separate message authentication code? [DAVI8Y] suggests three situations in which a message authentication code
is used:




1. There are a number of applications in which the same message is broadcast to a number of destinations. Examples are
notification to users that the network is now unavailable or an alarm signal in a military control center. It is cheaper and more
reliable to have only one destination responsible for monitoring authenticity. Thus, the message must be broadcast in plaintext
with an associated message authentication code. The responsible system has the secret key and performs authentication. If a
violation occurs, the other destination systems are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and cannot afford the time to decrypt all
incoming messages. Authentication is carried out on a selective basis, messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The computer program can be executed without
having to decrypt it every time, which would be wasteful of processor resources. However, if a message authentication code
were attached to the program, it could be checked whenever assurance was required of the integrity of the program.

Three other rationales may be added, as follows:

4. For some applications, it may not be of concern to keep messages secret, but it is important to authenticate messages. An
example is the Simple Network Management Protocol Version 3 (SNMPv3), which separates the functions of confidentiality and
authentication. For this application, it is usually important for a managed system to authenticate incoming SNMP messages,
particularly if the message contains a command to change parameters at the managed system. On the other hand, it may not
be necessary to conceal the SNMP traffic.

5. Separation of authentication and confidentiality functions affords architectural flexibility. For example, it may be desired to
perform authentication at the application level but to provide confidentiality at a lower level, such as the transport layer.

6. A user may wish to prolong the period of protection beyond the time of reception and yet allow processing of message
contents. With message encryption, the protection is lost when the message is decrypted, so the message is protected against
fraudulent modifications only in transit but not within the target system.

Finally, note that the MAC does not provide a digital signature because both sender and receiver share the same key.

able 11.94 summarizes the confidentiality and authentication implications of the approaches illustrated i.
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Table 11.2. Basic Uses of Message Authentication Code C (see )
A — B:M||C(K, M)

*Provides authentication

Only A and B shareK

(a) Message authentication
A — B:E(K2, M|IC(K, M)])

« Provides authentication

Only A and B shareK1

* Provides confidentiality



Only A and B share K2

(b) Message authentication and confidentiality: authentication tied to plaintext

A= B:E(K2, M)||C(K1, E(K2, M))

* Provides authentication

Using K1

« Provides confidentiality

Using K2

(c) Message authentication and confidentiality: authentication tied to ciphertext

Hash Function

A variation on the message authentication code is the one-way hash function. As with the message authentication code, a hash function
accepts a variable-size message M as input and produces a fixed-size output, referred to as ahash code H(%f LJ? Ef f fﬁ a hash
code does not use a key but is a function only of the input message. The hash code is also referred to as a fnessage digesfor hash
value. The hash code is a function of all the bits of the message and provides an error-detection capability: A change to any bit or bits in
the message results in a change to the hash code.

illustrates a variety of ways in which a hash code can be used to provide message authentication, as follows:

The message plus concatenated hash code is encrypted using symmetric encryption. This is identical in structure to the
internal error control strategy shown in ‘. The same line of reasoning applies: Because only A and B share the
secret key, the message must have come from A and has not been altered. The hash code provides the structure or
redundancy required to achieve authentication. Because encryption is applied to the entire message plus hash code,
confidentiality is also provided.

Only the hash code is encrypted, using symmetric encryption. This reduces the processing burden for those applications that
do not require confidentiality.
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Note that the combination of hashing and encryption results in an overall function that is, in fact, a MAC l . That s,
E(K, H(M)) is a function of a variable-length messageM and a secret keyK, and it produces a fixed-size output that is secure
against an opponent who does not know the secret key.

Only the hash code is encrypted, using public-key encryption and using the sender's private key. As with (b), this provides
authentication. It also provides a digital signature, because only the sender could have produced the encrypted hash code. In
fact, this is the essence of the digital signature technique.

If confidentiality as well as a digital signature is desired, then the message plus the private-key-encrypted hash code can be
encrypted using a symmetric secret key. This is a common technique.



It is possible to use a hash function but no encryption for message authentication. The technique assumes that the two
communicating parties share a common secret value S. A computes the hash value over the concatenation ofM and S and
appends the resulting hash value to M. Because B possessesS, it can recompute the hash value to verify. Because the secret
value itself is not sent, an opponent cannot modify an intercepted message and cannot generate a false message.

Confidentiality can be added to the approach of (e) by encrypting the entire message plus the hash code.

Figure 11.5. Basic Uses of Hash Function
(This item is displayed on page 329 in the print version)

lView full size image|




Source A

-t [Destination B ———»

LY L] E - =1 M @ I
. f— (Coampare
K E(K, [M Il HIM K ,"
)
HiM)
(a)
(11}
= A =t
F
L] K Compan:
;"
Fl
Ei&. H{M})
(k)
~{1}
- .1.." lI'-|_-'|I
i Fir, Compare
; 3 1
F
E(PR,,, HIM)) D}
(c)

)

E(K, [M 1| E(PR,,. HIMWT

M

(D) M
T &
K y

£
&

E(PR,, H(M))

—*@ﬁ

PU,  Compare

(el
Ll <O
‘_F Compane
£
£
HiM 05
[ch
M [ 5 —lD—=(H)
i Cormpan
EiK, [MIHMES)) K P
#
HiM 11 5)
i
When confidentiality is not required, methods (b) and (c) have an advantage over those that encrypt the entire message jn that less
en growing interest in techniques that avoid encryption (gigure 11.5¢). Several

computation is required. Nevertheless, there has b

reasons for this interest are pointed out in [TSUD92:

® Encryption software is relatively slow. Even though the amount of data to be encrypted per message is small, there may be a



steady stream of messages into and out of a system.

Encryption hardware costs are not negligible. Low-cost chip implementations of DES are available, but the cost adds up if all
nodes in a network must have this capability.

® Encryption hardware is optimized toward large data sizes. For small blocks of data, a high proportion of the time is spent in

initialization/invocation overhead.

licensed, adding a cost.

Encryption algorithms may be covered by patents. For example, until the patent expired, RSA was patented and had to be

able 11.9 summarizes the confidentiality and authentication implications of the approaches illustrated i. We next examine

MACs and hash codes in more detail.
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Table 11.3. Basic Uses of Hash Function H (see

A= B:EK, M|IH(M)])

 Provides confidentiality

Only A and B shareK

« Provides authentication

H(M) is cryptographically protected

(a) Encrypt message plus hash code
A i B: M||E(K, HM))

* Provides authentication

H(M) is cryptographically protected

(b) Encrypt hash codeshared secret key
A i B: M||E(PRa, HM))

« Provides authentication and digital signature

H(M) is cryptographically protected

Only A could create EPRa, HM))

A ) B: EK, M||E(PRa, HM))])
* Provides authentication and digital signature

* Provides confidentiality

Only A and B shareK

(d) Encrypt result of (c)shared secret key
A i B: M||H(M]|S)

* Provides authentication

Only A and B shareS

(e) Compute hash code of message plus secret value
A ) B: EK, [M[[H(M[|S])

» Provides authentication

Only A and B shareS

* Provides confidentiality



Only A and B shareK

(c) Encrypt hash codesender's private key (f) Encrypt result of (e)
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11.3. Message Authentication Codes

A MAC, also known as a cryptographic checksum, is generated by a function C of the form
MAC = C(K, M)

where M is a variable-length message,K is a secret key shared only by sender and receiver, and G, M) is the fixed-length authenticator.
The MAC is appended to the message at the source at a time when the message is assumed or known to be correct. The receiver
authenticates that message by recomputing the MAC.

n this sectjon, we review the requirements for the function C and then examine a specific example. Other examples are discussed in

Chapter 14.

Requirements for MACs

When an entire message is encrypted for confidentiality, using either symmetric or asymmetric encryption, the security of the scheme
generally depends on the bit length of the key. Barring some weakness in the algorithm, the opponent must resort to a brute-force attack

using all possible keys. On average, such an attack will require 2(k-1) attempts for ak-bit key. In particular, for a ciphertext-only attack, the
opponent, given ciphertext C, would performPj = D(K|, C) for all possible key valuesK;j until a Pj was produced that matched the form of

acceptable plaintext.
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In the case of a MAC, the considerations are entirely different. In general, the MAC function is a many-to-one function, due to the
many-to-one nature of the function. Using brute-force methods, how would an opponent attempt to discover a key? If confidentiality is not
employed, the opponent has access to plaintext messages and their associated MACs. Suppose k > n; that is, suppose that the key size is
greater than the MAC size. Then, given a known M1 and MAC1, with MAC1 = C(K, M1), the cryptanalyst can perform MACj = C(Kj, M1) for

all possible key values Kj. At least one key is guaranteed to produce a match oMACj = MAC1. Note that a total of é( MACs will be

produced, but there are only 2"< 2k different MAC values. Thus, a number of keys will produce the correct MAC and the opponent has no

way of knowing which is the correct key. On average, a total of 2k/2n = 2(k-n) keys will produce a match. Thus, the opponent must iterate

the attack:
® Round1

Given: M1, MAC1 = C(K, M1)

Compute MACj = C(Ki, M) for all Zk keys
—

— (k1)

Number of matches

® Round?2
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Given: M2, MAC2 = C(K, M2)
o ; (k-n) )
Compute MACj = C(Kj, M2) for the 2 keys resulting from Round 1

—
Number of matches == 2(k-2X)

and so on. On average, a rounds will be needed ifk = a x n. For example, if an 80-bit key is used and the MAC is 32 bits long, then the first
round will produce about 248 possible keys. The second round will narrow the possible keys to about %6 possibilities. The third round

should produce only a single key, which must be the one used by the sender.

If the key length is less than or equal to the MAC length, then it is likely that a first round will produce a single match. It is possible that
more than one key will produce such a match, in which case the opponent would need to perform the same test on a new (message,
MAC) pair.

Thus, a brute-force attempt to discover the authentication key is no less effort and may be more effort than that required to discover a
decryption key of the same length. However, other attacks that do not require the discovery of the key are possible.

Consider the following MAC algorithm. Let M = (X1]|X2||...||Xm) be a message that is treated as a concatenation of 64-bit blocksXj. Then
define

o DD D,

C(K, M =E(K, D(M))

where $is the exclusive-OR (XOR) operation and the encryption algorithm is DES in electronic codebook mode. Thus, the key length

is 56 bits and the MAC length is 64 bits. If an opponent observes {M||C(K, M)}, a brute-force attempt to determineK will require at least 256
encryptions. But the opponent can attack the system by replacingX1 through Xm-1 with any desired valuesY1 through Ym-1 and
replacing Xm with Ym where Ym is calculated as follows:
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Ym=Y1 @Yz @ $Ym1 @D(M)

The opponent can now concatenate the new message, which consists of Y1 through Ym, with the original MAC to form a message that will
be accepted as authentic by the receiver. With this tactic, any message of length 64 x (m 1) bits can be fraudulently inserted.

Thus, in assessing the security of a MAC function, we need to consider the types of attacks that may be mounted against it. With that in
mind, let us state the requirements for the function. Assume that an opponent knows the MAC function C but does not know K. Then the
MAC function should satisfy the following requirements:

1. If an opponent observes M and C(K, M), it should be computationally infeasible for the opponent to construct a messagé/' such
that C(K, M") = C(K, M).

2. C(K, M) should be uniformly distributed in the sense that for randomly chosen messagesM and M', the probability that CK, M) =

CK, M) is Zn, where n is the number of bits in the MAC.

3. LetM' be equal to some known transformation onM. That is, M' = f(M). For example, f may involve inverting one or more

specific bits. In that case, Pr[C(K, M) = C(K, M")] = 2n.

The first requirement speaks to the earlier example, in which an opponent is able to construct a new message to match a given MAC, even
though the opponent does not know and does not learn the key. The second requirement deals with the need to thwart a brute-force attack



based on chosen plaintext. That is, if we assume that the opponent does not know K but does have access to the MAC function and can
present messages for MAC generation, then the opponent could try various messages until finding one that matches a given MAC. If the

()

MAC function exhibits uniform distribution, then a brute-force method would require, on average, attempts before finding a message

that fits a given MAC.

The final requirement dictates that the authentication algorithm should not be weaker with respect to certain parts or bits of the message
than others. If this were not the case, then an opponent who had M and CK, M) could attempt variations on M at the known "weak spots"
with a likelihood of early success at producing a new message that matched the old MAC.

Message Authentication Code Based on DES

The Data Authentication Algorithm, based on DES, has been one of the most widely used MACs for a number of years. The algorithm is
both a FIPS publication (FIPS PUB 113) and an ANSI standard (X9.17). However, as we discuss in Chapter 13, security weaknesses in
this algorithm have been discovered and it is being replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC) mode of operation of DES with an initialization vector
of zero. The data (e.g., message, record, file, or program) to be authenticated are grouped into contiguous 64-bit blocks: D1, D2,..., DN. If
necessary, the final block is padded on the right with zeroes to form a full 64-bit block. Using the DES encryption algorithm, E, and a

secret key, K, a data authentication code (DAC) is calculated as follows[figure 11.6):
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01 = E(K,D1)
2 = E(K, D2 ea'om

(@)
: = (K, D3 GE'.'oz])

(@]
N = E(K, DN $ONJJ)

Figure 11.6. Data Authentication Algorithm (FIPS PUB 113)
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[Page 334 (continued)]

11.4. Hash Functions

A hash value h is generated by a function H of the form
h=H(M)

where M is a variable-length message and Hi{1) is the fixed-length hash value. The hash value is appended to the message at the source
at a time when the message is assumed or known to be correct. The receiver authenticates that message by recompulti hash value.
Because the hash function itself is not considered to be secret, some means is required to protect the hash value (lFi ure 11.5).

We begin by examining the requirements for a hash function to be used for message authentication. Because hash functions are typically
quite complex, itis  useful to examine some very simple hash functions to get a feel for the issues involved. We then look at several
approaches to hash function design.
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Requirements for a Hash Function

The purpose of a hash function is to produce a "fingerprint" of a file, message, or other block of data, To be useful for message
authentication, a hash function H must have the following properties (adapted from a list in [NECH93)):

1. Hcan be applied to a block of data of any size.
2. H produces a fixed-length output.
3. H(x) is relatively easy to compute for any givenx, making both hardware and software implementations practical.

4. For any given value h, it is computationally infeasible to findx such that Hf) = h. This is sometimes referred to in the literature
as the one-way property.

5. For any given block x, it is computationally infeasible to findy i x such that Hfy) = H(x). This is sometimes referred to as
weak collision resistance
6. lItis compuonally infeasible to find any pair (X, y) such that Hx) = H(y). This is sometimes referred to as strong collision
) 2
resistance.
2l Unfortunately, these terms are not used consistently. Alternate terms used in the literature include
one-way hash function: (properties 4 and 5);collision-resistant hash function: (properties 4, 5, and 6);

weak one-way hash function: (properties 4 and 5);strong one-way hash function: (properties 4, 5, and 6).
The reader must take care in reading the literature to determine the meaning of the particular terms used.

The first three properties are requirements for the practical application of a hash function to message authentication.

ossible {0 generate a
message given a code. This property is important if the authentication technique involves the use of a secret value _). The
secret value itself is not sent; however, if the hash function is not one way, an attacker can easily discover the secret value: If the attacker

The fourth property, the one-way property, states that it is easy to generate a code given a message but virtually im
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can observe or intercept a transmission, the attacker obtains the message M and the hash codeC = H(SAB||M). The attacker then inverts

the hash function to obtain SAB||M = Hl(C). Because the attacker now has bothM and SAB||M, it is a trivial matter to recover SAB.

The fifth property guarantees that an alternative_me e hashing to the same value as a given message cannot be found. This prevents
forgery when an encrypted hash code is used 1 andfl). For these cases, the opponent can read the message and therefore
generate its hash code. However, because the opponent does not have the secret key, the opponent should not be able to alter the
message without detection. If this property were not true, an attacker would be capable of the following sequence: First, observe or
intercept a message plus its encrypted hash code; second, generate an unencrypted hash code from the message; third, generate an
alternate message with the same hash code.

The sixth property refers to how resistant the hash function is to a type of attack known as the birthday attack, which we examine shortly.
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Simple Hash Functions

All hash functions operate using the following general principles. The input (message, file, etc.) is viewed as a sequence af-bit blocks. The
input is processed one block at a time in an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every block. This can be expressed as follows:

Ci=hj1 $bi1 $ @ bim

where

Ci o < <

= ith bit of the hash code, 1==| == n

m = number of n-bit blocks in the input

bijj = ith bit injth block

@ = XOR operation

This operation produces a simple parity for each bit position and is known as a longitudinal redundancy check. It is reasonably effective for
random data as a data integrity check. Each n-bit hash value is equally likely. Thus, the probability that a data error will result in an

unchanged hash value is 2n. With more predictably formatted data, the function is less effective. For example, in most normal text files, the

high-order bit of each octet is always zero. So if a 128-bit hash value is used, instead of an effectiveness of 2128, the hash function on this

type of data has an effectiveness of 2112.

A simple way to improve matters is to perform a one-bit circular shift, or rotation, on the hash value after each block is processed. The
procedure can be summarized as follows:

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data as follows:
a. Rotate the current hash value to the left by one bit.
b. XOR the block into the hash value.

This has the effect of "randomizing" the input more completely and overcoming any regularities that appear in the input.



illustrates these two types of hash functions for 16-bit hash values.

Figure 11.7. Two Simple Hash Functions
(This item is displayed on page 337 in the print version)
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Although the second procedure provides a good measure of daja integrity, it is virtually useless for data security when an encrypted hash
code is used with a plaintext message, as in Eigures 11.54 andd. Given a message, it is an easy matter to produce a new message that
yields that hash code: Simply prepare the desired alternate message and then append an n-bit block that forces the new message plus




block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the hash code is_encrypted, you may still feel that such a simple
function could be useful when the message as well as the hash code are encrypted . But you must be careful. A technique
originally proposed by the National Bureau of Standards used the simple XOR applied to 64-bit blocks of the message and then an
encryption of the entire message that used the cipher block chaining (CBC) mode. We can define the scheme as follows: Given a
message consisting of a sequence of 64-bit blocks X1, X2,..., XN, define the hash codeC as the block-by-block XOR of all blocks and
append the hash code as the final block:
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C=XN+1=X1 $X2 $ $XN

Next, encrypt the entire message plus hash code, using CBC mode to produce the encrypted message Y1, Y2,..., YN+1. [JUEN85] points

out several ways in which the ciphertext of this message can be manipulated in such a way that it is not detectable by the hash code. For
example, by the definition of CBC (), we have

X Y, $D(K, Y1)
X =Yi1 $D(K, Yi)

XN+1 $
= YN D(K, YN+1)
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But XN+1 is the hash code:

wa €, D By,
=[v $D(K, Y1)] $ [Y1 $D(K, Y2)] @ $ [YN1 @ $ D (K, YN)]

Because the terms in the preceding equation can be XORed in any order, it follows that the hash code would not change if the ciphertext
blocks were permuted.

Birthday Attacks

this_is quite secure. For example, if an encrypted hash code C is transmitted
or‘), then an opponent would need to find anM' such that HM") = H(M)

ht think tha
to substitute another message and fool the receiver. On average, the o
matches the hash code of the intercepted message [see

Suppose that a 64-bit hash code is used. One mi
with the corresponding unencrypted message M j

ponent would have to try about 263 messages to find one that
, Equation (11.1)].




a different sort of attack is possible, based on the birthday paradox . Yuval proposed the following strategy
|

yuvard)

1. The source, A, is prepared o "sign" a message by appending the appropriate m-bit hash code and encrypting that hash code

with A's private key ).

2. The opponent generates 2m/2 variations on the message, all of which convey essentially the same meaning. The opponent
prepares an equal number of messages, all of which are variations on the fraudulent message to be substituted for the real one.

3. The two sets of messages are compared to find a pair of messages that produces the same hash code. The probability of
success, by the birthday paradox, is greater than 0.5. If no match is found, additional valid and fraudulent messages are
generated until a match is made.

4. The opponent offers the valid variation to A for signature. This signature can then be attached to the fraudulent variation for
transmission to the intended recipient. Because the two variations have the same hash code, they will produce the same
signature; the opponent is assured of success even though the encryption key is not known.

Thus, if a 64-bit hash code is used, the level of effort required is only on the order of 232 [see Igggendix 115], Eguation (11.7i .

The generation of many variations that convey the same meaning is not difficult. For example, the opponent could insert a number of

"space-space-backspace” character pairs between words throughout the document. Variations could then be generated by substituting

" -backspace-space" in selected instances. Alternatively, the opponent could simply reword the message but retain the meaning.
igure 11.4 [DAVI8Y] provides an example.

Figure 11.8. A Letter in 237 Variations [DAVI8Y]

(This item is displayed on page 339 in the print version)
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The conclusion to be drawn from this is that the length of the hash code should be substantial. We discuss this further in .
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Block Chaining Techniques

A number of proposals have been made for hash functions based on using a cipher block chaining technique, but without the secret key.
One of the first such proposals was that of Rabin [RABI7d]. Divide a messageM into fixed-size blocks M1, M2,..., MN and use a symmetric
encryption system such as DES to compute the hash code G as follows:




Ho = initial value
Hj = E(Mj, Hi, Hi1)

G =HN

[Page 340]

This is similar to the CBC technique, but in this case there is no secret key. As with any hash code, this scheme is subject to the
birthday attack, and if the encryption algorithm is DES and only a 64-bit hash code is produced, then the system is vulnerable.

Furthermore, another version of the birthday attack can be used even if the opponent has access to only one message and its valid
signature and cannot obtain multiple signings. Here is the scenario; we assume that the opponent intercepts a message with a signature in
the form of an encrypted hash code and that the unencrypted hash code is m bits long:

1. Use the algorithm defined at the beginning of this subsection to calculate the unencrypted hash codes.

2. Construct any desired message in the formQ1, Q2,..., QN2.
3. Compute forHj = E(Qj, Hi1) for 1 E i i: (N 2).

4. Generate 2m/2 random blocks; for each block X, compute EK, HN2). Generate an additional in/Z random blocks; for each
block Y, compute D(Y, G), where D is the decryption function corresponding to E.

5. Based on the birthday paradox, with high probability there will be anX and Y such that E(X, HN2) = D(Y, G).

6. Form the message Q1, Q2,..., QN2, X, Y. This message has the hash codeG and therefore can be used with the intercepted
encrypted signature.

This form of attack is known as a lneet-in-the-middle attack]. A number of researchers have proposed refinements intended to
strengthen the basic block chaining approach. For example, Davies and Price [DAVI89] describe the following variation:

Hi = E(Mi, Hi1) $Hi1
Another variation, proposed in MEYE8{],
Hi = E(Hi1, Mi) $Mi

However, both of these schemes have been shown to be vulnerable to a variety of attacks [. More generally, it can be shown that
some form of birthday attack will succeed against any hash scheme involving the use of cipher block chaining without a secret key
provided that either the resulting hash code is small enough (e.g., 64 bits or less) or that a larger hash code can be decomposed into
independent subcodes [m.

Thus, atfention has been directed at finding other approaches to hashing. Many of these have also been shown to have weaknesses
d ITC99]. We examine two strong hash functions i# hapter 134.

& prcy | wexT


file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

[Page 340 (continued)]

11.5. Security of Hash Functions and Macs

NEXT B

Just as with symmetric and public-key encryption, we can group attacks on hash functions and MACs into two categories: brute-force

attacks and cryptanalysis.
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Brute-Force Attacks

The nature of brute-force attacks differs somewhat for hash functions and MACs.

Hash Functions

The strength of a hash function against brute-force attacks depends solely on the length of the hash code produced by the algorithm.

Recall from our discussion of hash functions that there are three desirable properties:

® One-way: For any given codeh, it is computationally infeasible to findx such that Hk) = h.

® \weak collision resistance: For any given blockx, it is computationally infeasible to findy i x with Hfy) = H(x).

® Strong collision resistance: It is computationally infeasible to find any pair k&, y) such that H) = H(y).

For a hash code of length n, the level of effort required, as we have seen is proportional to the following:

One way
Weak collision resistance

Strong collision resistance

If strong collision resistance is required (and this is desirable for a general-p
strength of the hash code against brute-force attacks. Oorschot and Wiener

rpose S

2n/2

cure hash code), then the value 2n/2 determines the

VANO9

| presented a design for a $10 million collision

search machine for MD5, which has a 128-bit hash length, that could find a collision in 24 days. Thus a 128-bit code may be viewed as
inadequate. The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit hash length. With a hash length of 160 bits,
the same search ma require over four thousand years to find a collision. However, even 160 bits is now considered weak. We

return to this topic in [Chapter 13.



Message Authentication Codes

A brute-force attack on a MAC is a more difficult undertaking because it requires known message-MAC pairs. Let us see why this is so. To
attack a hash code, we can proceed in the following way. Given a fixed message x with n-bit hash codeh = H(x), a brute-force method of
finding a collision is to pick a random bit string y and check if Hy) = H(x). The attacker can do this repeatedly off line. Whether an off-line
attack can be used on a MAC algorithm depends on the relative size of the key and the MAC.

To proceed, we need to state the desired security property of a MAC algorithm, which can be expressed as follows:

® Computation resistance: Given one or more text-MAC pairs i, C(K, Xij)], it is computationally infeasible to compute any

text-MAC pair [x, C(K, x)] for any new inputx # Xi.

In other words, the attacker would like to come up with the valid MAC code for a given message x. There are two lines of attack possible:
Attack the key space and attack the MAC value. We examine each of these in turn.
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If an attacker can determine the MAC key, then it is possible to generate a valid MAC value for any input Suppose the key size isk bits
and that the attacker has one known text-MAC pair. Then the attacker can compute the n-bit MAC on the known text for all possible keys.
At least one key is guaranteed to produce the correct MAC, namely, the valid key that was initially used to produce the known text-MAC

) ) . k . . )
pair. This phase of the attack takes a level of effort proportional to 2" (that is, one operation for each of the 5 possible key values).
However, as was described earlier, because the MAC is a many-to-one mapping, there may be other keys that produce the correct value.
Thus, if more than one key is found to produce the correct value, additional text-MAC pairs must be tested. It can be shown that the level

of effort drops off rapidly with each additional text-MAC pair and that the overall level of effort is roughly 2k IMENEQY].
An attacker can also work on the MAC value without attempting to recover the key. Here, the objective is to generate a valid MAC value for
a given message or to find a message that matches a given MAC value. In either case, the level of effort is comparable to that for attacking

the one-way or weak collision resistant property of a hash code, or 2n. In the case of the MAC, the attack cannot be conducted off line
without further input; the attacker will require chosen text-MAC pairs or knowledge of the key.

To summarize, the level of effort for brute-force attack on a MAC algorithm can be expressed as min(2k, 2n). The assessment of strength
is similar to that for symmetric encryption algorithms. It would appear reasonable to require that the key length and MAC length satisfy a

relationship such as min(k, n) === N, where N is perhaps in the range of 128 bits.

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions and MAC algorithms seek to exploit some property of the algorithm
to perform some attack other than an exhaustive search. The way to measure the resistance of a hash or MAC algorithm to cryptanalysis
is to compare its strength to the effort required for a brute-force attack. That is, an ideal hash or MAC algorithm will require a cryptanalytic
effort greater than or equal to the brute-force effort.

Hash Functions



In recent years, there has been considerable effort, and some successes, in developing cryptanalytic attacks on hash functions. To
. This structure,

understand these, we need to look at the overall structure of a typr'ﬁalg_ﬁu‘ hash function, indicated in
referred to as an iterated hash function, was proposed by Merkle [MERK79, MERK8Y] and is the structure of most hash functions in use

today, including SHA and Whirlpool, which are discussed in[Chapter 14. The hash function takes an input message and partitions it intd
fixed-sized blocks of b bits each. If necessary, the final block is padded tob bits. The final block also includes the value of the total length of
the input to the hash function. The inclusion of the length makes the job of the opponent more difficult. Either the opponent must find two
messages of equal length that hash to the same value or two messages of differing lengths that, together with their length values, hash to

the same value.
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Figure 11.9. General Structure of Secure Hash Code
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The hash algorithm involves repeated use of a compression function, f, that takes two inputs (am-bit input from the previous step, called
the chaining variable, and ab-bit block) and produces ann-bit output. At the start of hashing, the chaining variable has an initial value that
is specified as part of the algorithm. The final value of the chaining variable is the hash value. Often, b > n; hence the term compression.

The hash function can be summarized as follows:
CVp =1V =initial n-bit value

=f(CVi1, Yi1) 1 i:i 5 L

HM) =CVL

where the input to the hash function is a message M consisting of the blocks Yo, Y1,..., YL1.

The motivation for this iterative structure stems from the observation by Merkle [MERK8Y] and Damgard PAMG89] that if the compression



function is collision resistant, then so is the resultant iterated hash function. Therefore, the structure can be used to produce a secure
hash function to operate on a message of any length. The problem of designing a secure hash function reduces to that of designing a
collision-resistant compression function that operates on inputs of some fixed size.

BBl The converse is not necessarily true.

Cryptanalysis of hash functions focuses on the internal structure of f and is based on attempts to find efficient techniques for producing
collisions for a single execution of f. Once that is done, the attack must take into account the fixed value of IV. The attack on f depends on
exploiting its internal structure. Typically, as with symmetric block ciphers, f consists of a series of rounds of processing, so that the attack
involves analysis of the pattern of bit changes from round to round.

Keep in mind that for any hash function there must exist collisions, because we are mapping a message of length at least equal to twice

the block size b (because we must append a length field) into a hash code of lengtn, where b === n. What is required is that it is
computationally infeasible to find collisions.

[Page 344]

acks that have been mounted on hash functions are rather complex and beyond our scope here. For the interested reader,
OBBQEh and BELL91Y] are recommended.

Message Authentication Codes

There is much more variety in the structure of MACs than in hash functions, so it is difficult to generalize about the cryptanalysis of MACs.
Further, far less work has been done on developing such attacks. A useful recent survey of some methods for specific MACs is [PREN9{].

& prcy | wexT
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11.6. Recommended Reading

IJUENBQ and bUENSZl provide a good background on message authentication, with a focus on ptographic MACs and hash
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September 1988.

UEN87 Jueneman, R. "Electronic Document Authentication."IEEE Network Magazine, April 1987.

ENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S.Handbook of Applied Cryptography. Boca Raton, FL:
CRC Press, 1997.

PREN9Y Preneel, B. "The State of Cryptographic Hash Functions." Proceedings, EUROCRYPT '96, 1996;
published by Springer-Verlag.

STINOZ Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2002.
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11.7. Key Terms, Review Questions, and Problems

Key Terms

Lrygtograghic checksur_rl

ash codg

ash functio

ash valug

Inessaqe authenticatiorl

Inessaqe authentication code (MAC{

essage diges

l)ne-wav hash functior{

Istronq collision resistancd

lﬂeak collision resistancé

Review Questions

111 What types of attacks are addressed by message authentication?



11.2
11.3

11.4

115
11.6
11.7
11.8
11.9
11.10

1111

Problems

111

11.2

11.3

What two levels of functionality comprise a message authentication or digital signature mechanism?

What are some approaches to producing message authentication?

When a combination of symmetric encryption and an error control code is used for message authentication,
in what order must the two functions be performed?

[Page 345]
What is a message authentication code?
What is the difference between a message authentication code and a one-way hash function?
In what ways can a hash value be secured so as to provide message authentication?
Is it necessary to recover the secret key in order to attack a MAC algorithm?
What characteristics are needed in a secure hash function?
What is the difference between weak and strong collision resistance?

What is the role of a compression function in a hash function?

If F is an error-detection function, either internal or external use will provide error-detection
capability. If any bit of the transmitted message is altered, this will be reflected in a mismatch of the received
FCS and the calculated FCS, whether the FCS function is performed inside or outside the encryption
function. Some codes also provide an error-correction capability. Depending on the nature of the function, if
one or a small number of bits is altered in transit, the error-correction code contains sufficient redundant
information to determine the errored bit or bits and correct them. Clearly, an error-correction code will provide
error correction capability when used external to the encryption function. Will it also provide this capability if
used internal to the encryption function?

The data authentication algorithm, described in , can be defined as using the cipher block
chaining (CBC) mode of operation of DES with an initialization vector of zero 1 . Show that the
same result can be produced using the cipher feedback mode.

The high-speed transport protocol XTP (Xpress Transfer Protocol) uses g_32-bit checksum function defined
as the concatenation of two_16-bit functions: XOR and RXOR, defined in Bection 11.4 as "two simple hash
functions" and illustrated in .

a. Wil this checksum detect all errors caused by an odd number of error bits? Explain.




11.4

115

11.6

11.7

b. Wil this checksum detect all errors caused by an even number of error bits? If not, characterize
the error patterns that will cause the checksum to fail.

c. Comment on the effectiveness of this function for use as a hash function for authentication.

a. Consider the Davies and Price hash code scheme described in and assume that
DES is used as the encryption algorithm:

Hi = Hi1 $ E(Mi, Hi1)

and recall the complementarity property of DES (Problem 3.14): If Y = E(K, X), thenY' = E(K, X').
Use this property to show how a message consisting of blocks M1, M2,..., MN can be altered
without altering its hash code.

b. Show that a similar attack will succeed against the scheme proposed inyIEYE8Y]:

Hi = Mj @ E(Hil, Mi)

a. Consider the following hash function. Messages are in the form of a sequence of decimal
numbers, M = (a1, a2,..., aj). The hash value h is calculated as

')
> a, |mod n
i=1

, for some predefi Does this hash function satisfy any of
the requirements for a hash function listed in [Section 11.4? Explain your answer.
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i
h = E{ﬁ,-jl mod n

b. Repeat part (a) for the hash function i=1

c. Calculate the hash function of part (b) forM = (189, 632, 900, 722, 349) anch = 989.

It is possible to use a hash function to construct a block cipher with a structure similar to DES. Because a
hash function is one way and a block cipher must be reversible (to decrypt), how is it possible?

Now consider the opposite problem: using an encryption algorithm to construct a one-way hash function.
Consider using RSA with a known key. Then process a message consisting of a sequence of blocks as
follows: Encrypt the first block, XOR the result with the second block and encrypt again, etc. Show that this
scheme is not secure by solving the following problem. Given a two-block message B1, B2, and its hash

RSAH(B1, B2) = RSA(RSA (Bl)$ B2)

Given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(B1, B2). Thus, the hash function
does not satisfy weak collision resistance.



11.8 Suppose H(m) is a collision resistant hash function that maps a message of arbitrary bit length into an-bit

hash value. Is it true that, for all messages x, x' withx i X', we have H) ¢ H(x)? Explain your answer.

e prey | NEXT B
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Appendix 11A Mathematical Basis of the Birthday Attack

In this appendix, we derive the mathematical justification for the birthday attack. We begin with a related problem and then look at the
problem from which the name "birthday attack" is derived.

Related Problem

A general problem relating to hash functions is the following. Given a hash function H, with n possible outputs and a specific value H), if H
is applied to k random inputs, what must be the value ofk so that the probability that at least one inpuy satisfies H(y) = H(x) is 0.5?

For a single value of y, the probability that Hf) = H(x) is just 1/n. Conversely, the probability that Hy) iH(x) is [1 (1/n)]. If we generatek
random values of y, then the probability that none of them match is just the product of the probabilities that each individual value does not

match, or [1 (]Jn)]k. Thus, the probability that there is at least one match is 1 [1 (]d)]k.
The binomial theorem can be stated as follows:
k(k — 1) k(k — 1) (k — 2)

|:] —Eil':lj':Z'l — ka +T£IE— 21 i,
Fa r.

For very small values of a, this can be approximated as (1ka). Thus, the probability of at least one match is approximated as 1 [1 (:Inl)]k
P
Wt [1 (k/n)] = k/n. For a probability of 0.5, we havek = n/2.

In particular, for an m-bit hash code, the number of possible codes is 51 and the value ofk that produces a probability of one-half is

Equation 11-1

= A {m—1)

)
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The Birthday Paradox



The birthday paradox is often presented in elementary probability courses to demonstrate that probability results are sometimes
counterintuitive. The problem can be stated as follows: What is the minimum value of k such that the probability is greater than 0.5 that at
least two people in a group of k people have the same birthday? Ignore February 29 and assume that each birthday is equally likely. To
answer, let us define

P(n, k) = Pr[at least one duplicate ink items, with each item able to take on one of equally likely values between 1
and n]

Thus, we are looking for the smallest value of k such that P(365,k) === 0.5. It is easier first to derive the probability that there are no

=

duplicates, which we designate as Q(365, k). If k === 365, then it is impossible for all values to be different. So we assumek === 365. Now
consider the number of different ways, N, that we can havek values with no duplicates. We may choose any of the 365 values for the first
item, any of the remaining 364 numbers for the second item, and so on. Hence, the number of different ways is

Equation 11-2

N=27365 %364 X ...(365 -k + 1)

If we remove the restriction that there are no duplicates, then each item can be any of 365 values, and the total number of possibilities is

365k. So the probability of no duplicates is simply the fraction of sets of values that have no duplicates out of all possible sets of values:

3651/(365 — k)! 365!
Q(365, k) = { 7 A : ==
(365) (365 — k)1(365)F

and

Equation 11-3

365!
(365 — k)!(365)*

This function is plotted in . The probabilities may seem surprisingly large to anyone who has not considered the problem
before. Many people would guess that to have a probability greater than 0.5 that there is at least one duplicate, the number of people in
the group would have to be about 100. In fact, the number is 23, with P(365, 23) = 0.5073. For k = 100, the probability of at least one
duplicate is 0.9999997.

Figure 11.10. The Birthday Paradox
(This item is displayed on page 348 in the print version)
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Perhaps the reason that the result seems so surprising is that if you consider a particular person in a group, the probability that some other
person in the group has the same birthday is small. But the probability that we are concerned with is the probability thatany pair of people
in the group has the same birthday. In a group of 23, there are (23(23 1))/2 = 253 different pairs of people. Hence the high probabilities.

Useful Inequality

Before developing a generalization of the birthday problem, we derive an inequality that will be needed:

Equation 11-4

[ L)yt forallx = 0
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illustrates the inequality. To see that the inequality holds, note that the lower line is the tangent toxeat x = 0. at The slope of



that line is just the derivative of ex atx=0;

fix) =™

Figure 11.11. A Useful Inequality
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The tangent is a straight line of the formax + b, witha = 1, and the tangent atx = 0 must equal e0 Thus, the tangent is the function (1x),

Pt
confirming the inequality of Equation (11.4). Further, note that for smallx, we have (1x) L eX.



The General Case of Duplications

The birthday problem can be generalized to the following problem: Given a random variable that is an integer with uniform distribution

between 1 and n and a selection ofk instances (k 5 n) of the random variable, what is the probability, P(, k), that there is at least one

duplicate? The bi is just the special case with n = 365. By the same reasoning as before, we have the following
generalization of Equation (11.3):

Equation 11-5

P(n,k) =1 —

We can rewrite as

nXxn—1)X ... XxX(hn—k+1)
H
n—-1 n-—2 n—k+l]
=1 — 4 oy
| A n n

Using the inequality of :
F[ﬂ,k} == 1 s [[ﬂ—'ll_r“:l % [ﬂ—z.l,-'uj - {ﬂ_ik_l]';“]l]

] = e L) +(in)+. . +((k-1)/n)]

o E—{k}il;.f;—l]],-“lu

Now let us pose the question: What value of k is required such that P, k) E 0.5? To satisfy the requirement, we have
rllllzz - 1 _ E:—{k.}{l::k—l::l:ll."?_rr
7 = CII.I!;H{.I'{—] 1)/2n
kX (k—1)

2n

In2 =



For large k, we can replacek x (k 1) bykz, and we get

Equation 11-6

k=V2(In2)n = 1.18Vn = Va

As a reality check, for n= 365, we get-lif = 1 s I 8 ::'{ ﬁ"'-"'r 36;1 = 2254 which is very close to the correct answer of 23.

We can now state the basis of the birthday attack in the following terms. Suppose we have a function H, with Zm possible outputs (i.e., an
m-bit output). If H is applied tok random inputs, what must be so that there is the probability of at least one duplicate [i.e.,
H(X) = H(y) for some inputsx, y)]? Using the approximation inEquation (11.6):
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Equation 11-7

k= ﬁ,lﬁ.-fﬁ — E"".-"l

Overlap between Two Sets

There is a problem related to the general case of duplications that is also of relevance for our discussions. The problem is this: Given an

integer random variable with uniform distribution between 1 and n and two sets ofk instances (k === n) of the random variable, what is the
probability, R(n, k), that the two sets are not disjoint; that is, what is the probability that there is at least one value found in both sets?

Let us call the two sets X and Y, with elements {x1, x2,..., Xk} and {y1, y2,..., Yk}, respectively. Given the value ofx1, the probability thaty] =
x1 is just 1/n, and therefore probability that does not matchxy is [1 (1/n)]. If we generate thek random values inY, the probability that none of

these values is equal to is [1 (1/n)]k. Thus, the probability that there is at least one match tox1 is 1 [1 (1/h)]k.

To proceed, let us make the assumption that all the elements of X are distinct. Ifn is large and ifk is also large (e.g., on the order of ,"”Iﬁ
), then this is a good approximation. In fact, there may be a few duplications, but most of the values will be distinct. With that assumption,
we can make the following derivation:

Pr[nomatchinYtox;]=|1——

"
1 kN k 1 |
Pr[no match in ¥ to X] = (1 i ) = (] - =



NN ny 7 h e J

—
|

R(n, k) = Pr[at least one match in ¥Yto X] = 1

Using the inequality of Equation (11.4

R, k) > 1 (el/n)kz

R, K) > 1 (€2

Let us pose the question: What value ofk is required such that Rg, k) > 0.5? To satisfy the requirement, we have
b}
i Ep K-/
1/2 =1 — (e™*/)
2 = etin

In(2) = s

Equation 11-8

k= V{(In(2))n = 0.83Vn = va

We can state this in terms related to birthday attacks as follows. Suppose we have a function H, with 2m possible outputs (i.e., anm-bit
output). Apply H to k random inputs to produce the set X and again tok additional random inputs to produce the set Y. What must be the
value of k so that there is the probability of at least 0.5 that there is a match between the two sets (i.e., k{ = H(y) for some inputsx &= X,y

guation (11.8):

E Y)? Using the approximation i

M~ YR

k=1 ExT
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Chapter 12. Hash and MAC Algorithms
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Each of the messages, like each one he had ever read of Stern's commands, began with a number and ended
with a number or row of numbers. No efforts on the part of Mungo or any of his experts had been able to break
Stern's code, nor was there any clue as to what the preliminary number and those ultimate numbers signified.

Talking to Strange Men, Ruth Rendell

The Douglas Squirrel has a distinctive eating habit. It usually eats pine cones from the bottom end up. Partially
eaten cones can indicate the presence of these squirrels if they have been attacked from the bottom first. If,
instead, the cone has been eaten from the top end down, it is more likely to have been a crossbill finch that has
been doing the dining.

Squirrels: A Wildlife Handbook, Kim Long

Key Points

® \virtually all secure hash algorithms have the general structure shown i.

® The compression function used in secure hash algorithms falls into one of two categories: a function
specifically designed for the hash function or a symmetric block cipher. SHA and Whirlpool are examples of
these two approaches, respectively.

° Message authentication codes also fall into two categories; those based on the use of a secure hash
algorithm and those based on the use of a symmetric block cipher. HMAC and CMAC are examples of
these two approaches, respectively.

In this chapter, we look at important examples of both secure | ithms and message authentication codes (MACs). Most
important modern hash functions follow the basic structure of figure 11.9. This has proved to be a fundamentally sound structure, and
newer designs simply refine the structure and add to the hash code length. Within this basic structure, two approaches have been

followed in the design of the compression function, which is the basic building block of the hash function. Traditionally, most hash
functions that have achieved widespread use rely on a compression function specifically designed for the hash function. Typically, the
compression function makes use of modular arithmetic and logical binary operations. Another approach is to use a symmetric block
cipher as the compression function. In this chapter, we examine perhaps the most important example of each approach: the Secure
Hash Algorithm (SHA) and Whirlpool.

MACs also conveniently fall into two categories based on their fundamental building block. One popular approach is to use a hash
algorithm such as SHA as the  core of the MAC algorithm. Another approach is to use a symmetric block cipher in a cipher block
chaining mode. Again, we look at perhaps the most important example of each approach: HMAC and CMAC.

[Page 353]
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12.1. Secure Hash Algorithm

[Page 353 (continued)]

NEXT B

The Secure Hash Algorithm (SHA) was developed by the National Institute of Standards and Technology (NIST) and published as a
federal information processing standard (FIPS 180) in 1993; a revised version was issued as FIPS 180-1 in 1995 and is generally referred
to as SHA-1. The actual standards document is entitled Secure Hash Standard. SHA is based on the hash functionMD4 and its design
closely models MD4. SHA-1 is also specified in RFC 3174, which essentially duplicates the material in FIPS 180-1, but adds a C code

implementation.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised version of the standard, FIPS 180-2, t
versions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-512 (|

hat defined three new

able 12.1). These new

versions have the same underlying structure and use the same types of modular arithmetic and logical binary operations as SHA-1. In
2005, NIST announced the intention to phase out approval of SHA-1 and move to a reliance on the other SHA versions by 2010. Shortly
thereafter, a research team described an attack in which two separate messages could be found that deliver the same SHA-1 hash using

269 operations, far fewer than the 90 operations previously thought needed to find a collision with an SHA-1 hashfVANGO0Y]. This result

should hasten the transition to the other versions of SHA.

Table 12.1. Comparison of SHA Parameters

SHA-1 SHA-256 SHA-384 SHA-512
Message digest size 160 256 384 512
Message size <264 <264 <2128 <2128
Block size 512 512 1024 1024
Word size 32 32 64 64
Number of steps 80 64 80 80
Security 80 128 192 256

Notes: 1. All sizes are measured in bits.

2n/2

2. Security refers to the fact that a birthday attack on a message digest of size n produces a collision with a workfactor of approximately

In this section, we provide a description of SHA-512. The other versions are quite similar.

SHA-512 Logic

The algorithm takes as input a message with a maximum length of less than 2128 bits and produces as output a 512-bit message digest.
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The input is processed in 1024-bit blocks. depicts the overall processing of a message to produce a digest.
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Figure 12.1. Message Digest Generation Using SHA-512
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This follows the general structure depicted in. The processing consists of the following steps:

® Step 1: Append padding bits. The message is padded so that its length is congruent to 896 modulo 1024 [IengtfE 896
(mod 1024)]. Padding is always added, even if the message is already of the desired length. Thus, the number of padding bits
is in the range of 1 to 1024. The padding consists of a single 1-bit followed by the necessary number of 0-bits.

® Step 2: Append length. A block of 128 bits is appended to the message. This block is treated as an unsigned 128-bit integer
(most significant byte first) and contains the length of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer multiple of 1024 bits in length. I, the
expanded message is represented as the sequence of 1024-bit blocks M1, M2,..., MN, so that the total length of the expanded
message is N x 1024 bits.

® Step 3: Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final results of the hash function. The buffer
can be represented as eight 64-bit registers (a, b, c, d, e, f, g, h). These registers are initialized to the following 64-bit integers
(hexadecimal values):



a = 6A09E667F3BCC908

b = BB67AE8584CAA73B

¢ = 3C6EF372FE94F82B

¢ = AS4FF53A5F1D36F1

e = 510E527FADEG682D1

f=9B05688C2B3EGC1F

g = 1F83D9ABFB41BD6B

h = 5BEOCDI9137E2179
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These values are stored in big-endian format, which is the most significant byte of a word in the low-address (leftmost) byte
position. These words were obtained by taking the first sixty-four bits of the fractional parts of the square roots of the first eight
prime numbers.

Step 4: Process message_in 1024-bit (128-word) blocks. The_heart of the algorithm is a module that consists of 80 rounds;
this module is labeled F in Eigure 12.1. The logic is illustrated in

Figure 12.2. SHA-512 Processing of a Single 1024-Bit Block
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Each round takes as input the 512-bit buffer value abcdefgh, and updates the contents of the buffer. At input to the first round,
the buffer has the value of the intermediate hash value, Hj-1. Each roundt makes use of a 64-bit valueWt derived from the
current 1024-bit block being processed (Mj) These values are derived using a message schedule described subsequently.

Each round also makes use of an additive constant Kt where O E t == 79 indicates one of the 80 rounds. These words
represent the first sixty-four bits of the fractional parts of the cube roots of the first eighty prime numbers. The constants provide
a "randomized" set of 64-bit patterns, which should eliminate any regularities in the input data.

The output of the eightieth round is added to the input to the first round Klj-1)to produce Hj. The addition is done independently

for each of the eight words in the buffer with each of the corresponding words in Hj-1 using addition modulo 264.
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® Step 5: Output. After all N 1024-bit blocks have been processed, the output from theNth stage is the 512-bit message digest.

We can summarize the behavior of SHA-512 as follows:

Ho =1V

Hi = SUMe4(Hi-1, abcdefghi)

MD =HN
where
v = initial value of the abcdefgh buffer, defined in step 3
abcdefghi = the output of the last round of processing of theith message block
N = the number of blocks in the message (including padding and length fields)
SUMe4

= Addition modulo 264 performed separately on each word of the pair of inputs

MD = final message digest value



SHA-512 Round Function

Let us look in more detail at the logic in each of the 80 steps of the processing of one 512-bit block (. Each round is defined by
the following set of equations:

512

T, =h+ Chle,f,g) + (D, ¢) + W + K,

v
|

(S°%a) + Maj(a, b, c)
- L+

— i1

= b

S i

=d + T

[

!
g

m e e m R TR
I

where
t
=step number; O ===t === 79
Ch(e, f,
(ef9 = (e AND) $(NOTe AND g) the conditional function: If ethenf else g
Maj(a, b,
3@.b.c) = (@AND b) $(a AND c) $ (b AND c) the function is true only of the majority (two or three) of the
arguments are true.
512 3 — o | e A0
(3:%) = ROTR*(a) ® ROTR*(a) ® ROTR®(a)
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($2%) = ROTRY(e) @ ROTR¥(e) @ ROTR*(¢)



- '

ROTRn(X) = circular right shift (rotation) of the 64-bit argumentx by n bits
Wt = a 64-bit word derived from the current 512-bit input block

Kt = a 64-bit additive constant

+ 64

= addition modulo 2

Figure 12.3. Elementary SHA-512 Operation (single round)
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It remains to indicate how the 64-bit word values Wt are derived from the 1024-bit message. illustrates the mapping. The first
16 values of Wt are taken directly from the 16 words of the current block. The remaining values are defined as follows:

W, = a33(W_s) + W7 + o (Wi_is) + Wi_ys



o (x) = ROTR'(x) @ ROTR®(x) @ SHR'(x)
i “(x) = ROTR"(x) ® ROTR"{x) @ SHR"(x)

ROTRn(x) = circular right shift (rotation) of the 64-bit argumentx by n bits

SHRn(X) = left shift of the 64-bit argument x by n bits with paddingby zeros on the right

Figure 12.4. Creation of 80-word Input Sequence for SHA-512 Processing of Single Block
(This item is displayed on page 358 in the print version)
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Thus, in the first 16 steps of processing, the value of Wt is equal to the corresponding word in the message block. For the remaining 64
steps, the value of Wt consists of the circular left shift by one bit of the XOR of four of the preceding values of W, with two of those
values subjected to shift and rotate operations. This introduces a great deal of redundancy and interdependence into the message blocks
that are compressed, which complicates the task of finding a different message block that maps to the same compression function output.
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[Page 358 (continued)]

12.2. Whirlpool

[ Most of the material in this section originally appeared inBTAL Of].

In this section, we examine the hash function Whirlpool [BARROJ], one of whose designers is also co-inventor of Rijndael, adopted as the
Advanced Encryption Standard (AES) _\Whirlpool is one of only two hash functions endorsed by NESSIE (New European Schemes for

Signatures, Integrity, and Encryption). 2 The NESSIE project is a European Unionsponsored effort to put forward a portfolio of strong
cryptographic primitives of various types.

2 The other endorsed scheme consists of three variants of SHA: SHA-256, SHA-384, and SHA-512.

Whirlpool is based on the use of a block cipher for the compression function. As was mentioned in , there has traditionally been
little interest in the use of block-cipher-based hash functions because of the demonstrated security vulnerabilities of the structure. The
following are potential drawbacks:

1. Block ciphers do not possess the properties of randomizing functions. For example, they are invertible. This lack of randomness
may lead to weaknesses that can be exploited.

2. Block ciphers typically exhibit other regularities or weaknesses. For example, [MIYA9(] demonstrates how to compromise many
hash schemes based on properties of the underlying block cipher.

3. Typically, block-cipher-based hash functions are significantly slower than hash functions based on a compression function
specifically designed for the hash function.

4. A principal measure of the strength of a hash function is the length of the hash code in bits. For block-cipher-based hash codes,
proposed designs have a hash code length equal to either the cipher block length or twice the cipher block length.
Traditionally, cipher block length has been limited to 64 bits (e.g., DES, triple DES), resulting in a hash code of questionable
strength.
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However, since the adoption of AES, there has been renewed interested in developing a secure hash function based on a strong block
cipher and exhibiting good performance. Whirlpool is a block-cipher-based hash function intended to provide security and performance
that is comparable, if not better, than that found in non-block-cipher based hash functions, such as SHA. Whirlpool has the following
features:

1. The hash code length is 512 bits, equaling the longest hash code available with SHA.

2. The overall structure of the hash function is one that has been shown to be resistant to the usual attacks on block-cipher-based
hash codes.

3. The underlying block cipher is based on AES and is designed to provide for implementation in both software and hardware that
is both compact and exhibits good performance.

The design of Whirlpool sets the following security goals: Assume we take as hash result the value of any n-bit substring of the full
Whirlpool output.

® The expected workload of generating a collision is of the order of 2n/2 executions of Whirlpool.

® Given an n-bit value, the expected workload of finding a message that hashes to that value is of the order of 2executions of
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Whirlpool.

® Givena message and its n-bit hash result, the expected workload of finding a second message that hashes to the same value is

of the order of 2" executions of Whirlpool.

® |t is infeasible to detect systematic correlations between any linear combination of input bits and any linear combination of bits of
the hash result, or to predict what bits of the hash result will change value when certain input bits are flipped (this means
resistance against linear and differential attacks).

The designers assert their confidence that these goals have been met with a considerable safety margin. However, the goals are not
susceptible to a formal proof.

We begin with a discussion of the structure of the overall hash function, and then examine the block cipher used as the basic building
block.

Whirlpool Hash Structure

Background

The general iterated hash structure proposed by Merkle ( is used in virtually all secure hash functions. However, as was
pointed out, there ifficulties in designing a truly secure iterated hash function when the compression function is a block ciphe,

Pre eel PREN933 performed a systematic analysis of block-cipher-based hash functions, using the model depicted i
i‘ In this model, the hash code length equals the cipher block length. Additional security problems are introduced and the analysis is
more difficult if the hash code length exceeds the cipher block length. Preneel devised 64 possible permutations of the basic model, based
on which input served as the encryption key and which served as plaintext and on what input, if any, was combined with the ciphertext to
produce the intermediate hash code. Based on his analysis, he concluded that only schemes in which the plaintext was fed forward and
combined with the ciphertext were secure. Such an arrangement makes the compression function difficult to invert. ] confirmed

these results, but pointed out the security problem of using an established block cipher such as AES: The 128-bit hash code value
resulting from the use of AES or another scheme with the same block size may be inadequate for security.
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Figure 12.5. Model of Single Iteration of Hash Function (hash code equals block length)

Note: Triangular hatch indicates encryption key input.
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m; = ith block of message input FF
H; = ith intermediate hash value

P = plaintext; K = encryption key; C = ciphertext

FF = feed forward value

P, K, and FF can be chosen from the set (0, m;, H,_, m; @& H,_ )

Whirlpool Logic
Given a message consisting of a sequence of blocks m1, m2,..., mt the Whirlpool hash function is expressed as follows:

Ho = initial value

Hi = E(Hi-1, mi) $Hi_1 $ mj = intermediate value

Ht = hash code value

In terms of the model of , the encryption key input for each iteration is the intermediate hash value from the previous iteration;
the plaintext is the current message block; and the feedforward value is the bitwise XOR of the current message block and the
intermediate hash value from the previous iteration.

The algorithm takes as input a message ﬁ'gm_ix]mum length of less than 2256 bits and produces as output a 512-bit message digest.

The input is processed in 512-bit blocks. Figure 12.4 depicts the overall processing of a message to produce a digest. This follows the
general structure depicted in . The processing consists of the following steps:

L Step 1: Append padding bits. The message is padded so that its length in bits is an odd multiple of 256. Padding is always
added, even if the message is already of the desired length. For example, if the message is 256 x 3 = 768 bits long, it is padded
by 512 bits to a length of 256 x 5 = 1280 bits. Thus, the number of padding bits is in the range of 1 to 512.

Figure 12.6. Message Digest Generation Using Whirlpool
(This item is displayed on page 361 in the print version)

Note: Triangular hatch marks key input.
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The padding consists of a single 1-bit followed by the necessary number of 0-bits.
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° Step 2: Append length. A block of 256 bits is appended to the message. This block is treated as an unsigned 256-bit integer
(most significant byte first) and contains the length in bits of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer multiple of 512 bits in length. I, the expanded
message is represented as the sequence of 512-bit blocks m1, m2,..., mt so that the total length of the expanded message ist x
512 hits. These blocks are viewed externally as arrays of bytes by sequentially grouping the bits in 8-bit chunks. However,
internally, the hash state Hj is viewed as an 8 x 8 matrix of bytes. The transformation between the two is explained subsequently.

® Step 3: Initialize hash matrix. An 8 x 8 matrix of bytes is used to hold intermediate and final results of the hash function. The
matrix is initialized as consisting of all 0-bits.

® Step 4: Process message in 512-bit (64-byte) blocks. The heart of the algorithm is the block cipher W.

Block Cipher W

Unlike virtually all other proposals for a block-cipher-based hash function, Whirlpool uses a block cipher that is specifically designed for
use in the hash function and that is unlikely ever to be used as a standalone encryption function. The reason for this is that the designers
wanted to make use of a block cipher with the security and efficiency of AES but with a hash length that provided a potential security equal
to SHA-512. The result is the block cipher W _which has a similar  structure and uses the same elementary functions as AES, but which
uses a block size and a key size of 512 bits. compares AES and W.
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Although W is similar to AES, it is not simply an extension. Recall that the Rijndael proposal for AES defined a cipher in which the block
length and the key length can be independently specified to be 128, 192, or 256 bits. The AES specification uses the same three key size



alternatives but limits the block length to 128 bits. AES operates on a state of 4 x 4 bytes. Rijndael with block length 192 bits operates on a
state of 4 x 6 bytes. Rijndael with block length 256 bits operates on a state of 4 x 8 bytes. W operates on a state of 8 x 8 bytes. The more
the state representation differs from a square, the slower the diffusion goes and the more rounds the cipher needs. For a block length of
512 bits, the Whirlpool developers could have defined a Rijndael operating on a state of 4 x 16 bytes, but that cipher would have needed
many rounds and it would have been very slow.

As|[lable 12.2 indicates, W uses a row-oriented matrix whereas AES uses a column-oriented matrix. There is no technical reason to prefer
one orientation over another, because one can easily construct an equivalent description of the same cipher, exchanging rows with
columns.

Table 12.2. Comparison of Whirlpool Block Cipher W and AES

W AES
Block size (bits) 512 128
Key size (bits) 512 128, 192, or 256

Matrix orientation Input is mapped row-wise Input is mapped column-wise

Number of rounds 10 10, 12, 0or 14

Key expansion W round function Dedicated expansion algorithm

GF(28) polynomial x8+x4+x3+x2+ 1(011D) x8+x4+x3+x+ 1(011B)

Origin of S-box Recursive structure

Multiplicative inverse in GF(28) plus affine
transformation

Successive entries of the S-box

Origin of round
constants

Elements 2! of GF(28)

Diffusion layer

Permutation

Right multiplication by 8 x 8 circulant MDS matrix (1,
1,4,1,8,5,2,9) - mix rows

Shift columns

Left multiplication by 4 x 4 circulant MDS matrix (2,
3, 1, 1) - mix columns

Shift rows

Overall Structure

shows the overall structure of W. The encryption algorithm takes a 512-bit block of plaintext and a 512-bit key as input and
produces a 512-bit block of ciphertext as output. The encryption algorithm involves the use of four different functions, or transformations:
add key (AK), substitute bytes (SB), shift columns (SC), and mix rows (MR), whose operations are explained subsequently. W consists of
a single application of AK followed by 10 rounds that involve all four functions. We can concisely express the operation of a roundr as a
round function RF that is a composition of functions:

Equation 12-1

RF(K,) = AK[K,Jo MR 0 SC 0 SB
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where K is the round key matrix for roundr. The overall algorithm, with key inputK, can be defined as follows:

W(K) =(

where the large circle indicates iteration of the composition function with index r running from 1 through 10.

10

Plaintext

Y

Add round key

Y

Substitute bytes

Y

Shift columns

Round 1

Y

O RF{KJ)UAKE&?;}

r=1

Figure 12.7. Whirlpool Cipher W
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Ciphertext

The plaintext input to W is a single 512-bit block. This block is treated as an 8 x 8 square matrix of bytes, labeled CState.
illustrates that the ordering of bytes within a matrix is by row. So, for example, the first eight bytes of a 512-bit plaintext input to the
encryption cipher occupy the first row of the internal matrix CState, the second eight bytes occupy the second row, and so on. The
representation of the linear byte stream as a square matrix can be concisely expressed as a mapping function m For a linear byte array X

with elements xk(0 5 k 5 63), the corresponding matrix A with elementsa; j(0 5 ij 5 7)we have the following correspondence:

A =m(X) — ajj=x8i+]

Figure 12.8. Whirlpool Matrix Structure
(This item is displayed on page 364 in the print version)
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Similarly, the 512-bit key is depicted as a square matrix KState of bytes. This key is used as input to the initial AK function. The key is also
expanded into a set of 10 round keys, as explained subsequently.

We now look at the individual functions that are part of W.
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The Nonlinear Layer SB

The substitute hyte function (SB) is a simple table lookup that provides a nonlinear mapping. W defines a 16 x 16 matrix of byte values,
called an S-box ([Table 12.3), that contains a permutation of all possible 256 8-bit values. Each individual byte o€ State is mapped into a
new byte in the following way: The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a column value.



These row and column values serve as indexes into the S-box to select a unique 8-bit output value. For example, the hexadecimal valu
{95}references row 9, column 5 of the S-box, which contains the value {BA}. Accordingly, the value {95}is mapped into the value {BA}. The
SB function can be expressed by the following correspondence, for an input matrix A and an output matrixB:

[l As we did for AES, a hexadecimal number is indicated by enclosing it in curly brackets when this is needed for
clarity.

B = SB(A) — bi,j = Slai,jl, 05 i.j 5 7

where S[x] refers to the mapping of input bytex into output byte Si] by the S-box.

Table 12.3. Whirlpool S-Box
(This item is displayed on page 365 in the print version)
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The S-box can be generated by the structure of . It consists of two nonlinear layers, each containing two 4 x 4 S-boxes



separated by a 4 x 4 randomly generated box. Each of the boxes maps a 4-bit input into a 4-bit output. The E box is defined as E(u) = {B}u

ifu ¢ {F} and E({F}) = 0, where arithmetic is performed over the finite field GF(f)with the irreducible polynomial f(x) = x4 +x+ 1.

Figure 12.9. Implementation of Whirlpool S-Box
(This item is displayed on page 366 in the print version)
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The SB function is designed to introduce nonlinearity into the algorithm. This means that the SB function should exhibit no correlations
between linear combinations of a input bits and linear combinations of a output bits. In addition, differences between sets of input bits
should not propagate into similar differences among the corresponding output bits; put another way, small input changes should cause
large output changes. These two properties help to make W resistant against linear and differential cryptanalysis.

The Permutation Layer SC

The permutation layer (shift columns) causes a circular downward shift of each column of CState except the first column. For the second



column, a 1-byte circular downward shift is performed; for the third column, a 2-byte circular downward shift is performed; and so on. The
SC function can be expressed by the following correspondence, for an input matrix A and an output matrixB:
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< <

B=SC(A)1==='bi,j=a(i-j)mod8,j0—i,i—7

The shift column transformation is more substantial than it may first appear. This is because CState is treated as an array of eight 8-byte
rows. Thus, on encryption, the first 8 bytes of the plaintext are copied to the first row of CState, and so on. A column shift moves an
individual byte from one row to another, which is a linear distance of a multiple of 8 bytes. Also note that the transformation ensures that
the 8 bytes of one row are spread out to eight different rows.

The Diffusion Layer MR

Recall from that for a function that exhibits diffusion, the statistical structure of the input is dissipated into long-range statistics of
the output. This is achieved by having each input bit affect the value of many output  bits; generally, this results in each output bit being
affected by many input bits. The diffusion layer (mix rows) achieves diffusion within each row individually. Each byte of a row is mapped
into a new value that is a function of all eight bytes in that row. The transformation can be defined by the matrix multiplication: B = AC
where A is the input matrix, B is the output matrix, andC is the transformation matrix:
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01 01 04 01 Os8 05 02 09
09 01 01 04 01 08 05 02
0z 09 01 00 04 01 08 05
05 02 09 01 01 04 01 08
08 05 02 09 01 01 04 01
01 08 05 02 09 01 01 04
04 01 08 05 02 09 01 Ol
01 04 01 08 05 02 09 01 ]

Each element in throduct matrix is the sum of products of elements of one row and one column. In this case, the individual additions
3

and multiplications 4 are performed in GF(?)With the irreducible polynomial f(x) = x8 + x4 +Xx + x2 + 1. As an example of the matrix

multiplication involved, the first element of the output matrix is

[l As we did for AES, we use the symbol - to indicate multiplication over the finite field GF&and $to indicate
bitwise XOR, which corresponds to addition in GF(ZB)

b0,0 = a0,0 $ (9-a0,1) $(2- ao,2) @ (5-a03)$(8-ao,4) @ ao,5 @ (4-a0,6) $ao,7
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Note that each row of C is constructed by means of a circular right shift of the preceding rowC is designed to be amaximum distance
separable (MDS) matrix. In the field of error-correcting codes, an MDS code takes as input a fixed-length bit string and produces an
expanded output string such that there is the maximum Hamming distance between pairs of output strings. With an MDS code, even
multiple bit errors result in a code that is closer to the correct value than to some other valye._In the context of block ciphers, a
transformation matrix constructed using an MDS code provides a high degree of diffusion [. The use of MDS codes to provide
high diffusion was first proposed in [RIIM94].

The matrix C is an MDS matrix that has as many 1-elements as possible (3 per row). Overall, the coefficients i@ provide for efficient
hardware implementation.

The Add Key Layer AK

In the add key layer, the 512 bits of CState are bitwise XORed with the 512 bits of the round key. The AK function can be expressed by
the following correspondence, for an input matrix A, an output matrix B, and a round keyki:

B = AK[K{](A) — bi, j = aij, $ KijO i: ij i: 7

Key Expansion for the Block Cipher W

As shown in , key expansion is achieved by using the block cipher itself, with a round constant serving as the round key for the

<. <

expansion. The round constant for round r(1 == r == 10)is a matrixRC[r] in which only the first row is nonzero, and is defined as follows:

relrlo,j = SI8(r-1)+, o gj <., <. =,
relrhii =0, 155,855,585 S

Each element of the first row is a mapping using the S-box. Thus, the first row of RC[1] is

S[O] | S[1] | S[2] | S[3] [ S[4] | S[5]] S[e] | S[7] | =

18| 23| C6| ES | 87| B8 | 01 | 4F

Using the round constants, the key schedule expands the 512-bit cipher key K onto a sequence of round keysK, K1, . . .,K10:
Ko=K
Kr = RF[RC[rTI(Kr-1)

where RF is the round function defined in Equation (12.1). Note that for the AK phase of each round, only the first row ofK State is altered.

Performance of Whirlpool



As yet, there has been little implementation experience with Whirlpool. Recall that the NIST evaluation of Rijndael determined that it
exhibited good performance in both hardware and software and that it is well suited to restricted-space (low memory) requirements. These
criteria were important in the selection of Rijndael for AES. Because Whirlpool uses the same functional building blocks as AES and has
the same structure, we can expect similar performance and space characteristics.
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One study that has been done is reported in KITS04||. The authors compared Whirlpool with a number of other secure hash

functions, including all of the versions of SHA. The authors developed multiple hardware implementations of each hash function and
concluded that, compared to SHA-512, Whirlpool requires more hardware resources but performs much better in terms of throughput.

e prey X
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12.3. HMAC

In , we looked at an example of a message authentication code (MAC) based on the use of a symmetric block cipher, namely
the Data Authentication Algorithm defined in FIPS PUB 113. This has traditionally been the most common approach to constructing a
MAC. In recent years, there has been increased interest in developing a MAC derived from a cryptographic hash function. The motivations
for this interest are

1. Cryptographic hash functions such as MD5 and SHA-1 generally execute faster in software than symmetric block ciphers such
as DES.

2. Library code for cryptographic hash functions is widely available.

With the development of AES and the more widespread availability of code for encryption algorithms, these considerations are less
significant, but hash-based MACs continue to be widely used.

A hash function such as SHA was not designed for use as a MAC and cannot be used directly for that purpose because it does not rely on
a secret key. There have been a number of p for the incorporation of a secret key into an existing hash algorithm. The approach
that has received the most support is HMAC EELL%a., h HMAC has been issued as RFC 2104, has been chosen as the
mandatory-to-implement MAC for IP security, and is used in other Internet protocols, such as SSL. HMAC has also been issued as a NIST
standard (FIPS 198).

HMAC Design Objectives

RFC 2104 lists the following design objectives for HMAC:

® 7o use, without modifications, available hash functions. In particular, hash functions that perform well in software, and for which
code is freely and widely available.

® T allow for easy replaceability of the embedded hash function in case faster or more secure hash functions are found or
required.

® 1o preserve the original performance of the hash function without incurring a significant degradation.
® 7o use and handle keys in a simple way.

® 7o have a well understood cryptographic analysis of the strength of the authentication mechanism based on reasonable
assumptions about the embedded hash function.

The first two objectives are important to the acceptability of HMAC. HMAC treats the hash function as a "black box." This has two benefits.
First, an existing implementation of a hash function can be used as a module in implementing HMAC. In this way, the bulk of the HMAC
code is prepackaged and ready to use without modification. Second, if it is ever desired to replace a given hash function in an HMAC
implementation, all that is required is to remove the existing hash function module and drop in the new module. This could be done if a
faster hash function were desired. More important, if the security of the embedded hash function were compromised, the security of HMAC
could be retained simply by replacing the embedded hash function with a more secure one (e.g., replacing SHA with Whirlpool).
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The last design objective in the preceding list is, in fact, the main advantage of HMAC over other proposed hash-based schemes. HMAC
can be proven secure provided that the embedded hash function has some reasonable cryptographic strengths. We return to this point



later in this section, but first we examine the structure of HMAC.

HMAC Algorithm

illustrates the overall operation of HMAC. Define the following terms:

H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)

\% = initial value input to hash function

M = message input to HMAC(including the padding specified in the embedded hash function)

N =ithb|ockofM,O£i£(L-1)

L = number of blocks in M

b = number of bits in a block

n = length of hash code produced by embedded hash function

: = secret key recommended length is === n; if key length is greater thanb; the key is input to the hash function to produce an
n-bit key

K+ = K padded with zeros on the left so that the result i bits in length

ipad  =00110110 (36 in hexadecimal) repeatedo/8 times

opad =01011100 (5C in hexadecimal) repeatedb/8 times

Figure 12.10. HMAC Structure
(This item is displayed on page 370 in the print version)
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Then HMAC can be expressed as follows:

HMAC(K,M) = H[(K" $opad)||H[(K+ @ ipad)||M]]

In words,

1. Append zeros to the left end of K to create ab-bit string K+(e.g., if Kis of length 160 bits andb = 512 thenK will be appended
with 44 zero bytes 0 x 00).

2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit block S;j.
3. Append M to Si.

4. Apply H to the stream generated in step 3.

5. XOR K with opad to produce the b-bit blockSo
6. Append the hash result from step 4 to So
7. Apply H to the stream generated in step 6 and output the result.

Note that the XOR with ipad results in flipping one-half of the bits of K. Similarly, the XOR with opad results in flipping one-half of the bits of
K, but a different set of bits. In effect, by passingSi and Sp through the compression function of the hash algorithm, we have

pseudorandomly generated two keys from K.
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HMAC should execute in approximately the same time as the embedded hash function for long messages. HMAC adds three executions
of the hash compression function (for Sj,Sp and the block produced from the inner hash).



A more efficient implementation is possible, as shown in . Two quantities are precomputed:

fav, K $ipad))
fav, K $opad))

where f(cv, block) is the compression function for the hash function, which takes as arguments a chaining variable of n bits and a block ofb
bits and produces a chaining variable of n bits. These quantities only need to be computed initially and every time the key changes. In
effect, the precomputed quantities substitute for the initial value (IV) in the hash function. With this implementation, only one additional
instance of the compression function is added to the processing normally produced by the hash function. This more efficient
implementation is especially worthwhile if most of the messages for which a MAC is computed are short.

Figure 12.11. Efficient Implementation of HMAC
(This item is displayed on page 371 in the print version)
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Security of HMAC

The security of any MAC function based on an embedded hash function depends in some way on the cryptographic strength of the
underlying hash function. The appeal of HMAC is that its designers have been able to prove an exact relationship between the strength of
the embedded hash function and the strength of HMAC.
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The security of a MAC function is generally expressed in terms of the probability of successful forgery with a giv nt of time spent
by the forger and a given number of message-MAC pairs created with the same key. In essence, it is proved in EELL%a] that for a given
level of effort (time, message-MAC pairs) on messages generated by a legitimate user and seen by the attacker, the probability of
successful attack on HMAC is equivalent to one of the following attacks on the embedded hash function:

1. The attacker is able to compute an output of the compression function even with an IV that is random, secret, and unknown to
the attacker.

2. The attacker finds collisions in the hash function even when the 1V is random and secret.

In the first attack, we can view the compression function as equivalent to the hash function applied to a message consisting of a single
b-bit block. For this attack, the IV of the hash function is replaced by a secret, random value of bits. An attack on this hash function

requires either a brute-force attack on the key, which is a level of effort on the order of 2n or a birthday attack, which is a special case of
the second attack, discussed next.

In the second attack, the attacker is looking for two messages M and M' that produce the same hash: Hi#) = H(M"). This is the birthday
attack discussed in . We have shown that this requires a level of effort of 9/2 for a hash length ofn. On this basis, the security

of MD5 is called into question, because a level of effort of 94 looks feasible with today's technology. Does this mean that a 128-bit hash
function such as MD5 is unsuitable for HMAC? The answer is no, because of the following argument. To attack MD5, the attacker can
choose any set of messages and work on these off line on a dedicated computing facility to find a collision. Because the attacker knows
the hash algorithm and the default IV, the attacker can generate the hash code for each of the messages that the attacker generates.
However, when attacking HMAC, the attacker cannot generate message/code pairs off line because the attacker does not know K.
Therefore, the attacker must observe a sequence of messages generated by HMAC under the same key and perform the attack on these

known messages. For a hash code length of 128 bits, this requires 264 observed blocks (272bits) generated using the same key. On a
1-Gbps link, one would need to observe a continuous stream of messages with no change in key for about 150,000 years in order to
succeed. Thus, if speed is a concern, it is fully acceptable to use MD5 rather than SHA-1 as the embedded hash function for HMAC.
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[Page 372 (continued)]

12.4. CMAC

The Data Authentication Algorithm defined in FIPS PUB 113, also known as the CBC-MAC (cipher block chaining message authentication
code), is described in Chapter 11 This cipher-based MAC has been widely adopted in government and industry. BELLO(] demonstrated
that this MAC is secure under a reasonable set of security criteria, with the following restriction. Only messages of one fixed length of mn
bits are processed, where nis the cipher block size andm is a fixed positive integer. As a simple example, notice that given the CBC MAC

of a one-block message X, say T = MAC(K, X), the adversary immediately knows the CBC MAC for the two-block messageX]||(X
T)since this is once againT.

Black and Rogaway demonstrated that this limitation could be overcome using three keys: one key of lengtlk to be used at each
step of the cipher block chaining and two keys of length n, where k is the key length andn is the cipher block length. This proposed
construction was refined b ata and Kurosawa so that the two n-bit keys could be derived from the encryption key, rather than being
provided separately _ . This refinement has been adopted by NIST cipher-based message authentication code (CMAC) mode of
operation, for use with AES and triple DES. It is specified in NIST Special Publication 800-38B.

First, let us consider the operation of CMAC when the message is an integer multiple n of the cipher block length b. For AES, b = 128 and
for triple DES, b = 64. The message is divided inton blocks, M1, M2,...,Mn. The algorithm makes use of ak-bit encryption key K and an n-bit
constant K1. For AES, the key sizek is 128, 192, or 256 bits; for triple DES, the key size is 112 or 168 bits. CMAC is calculated as follows
Faure 2220
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Ci1 =EKM

© . E(K,[M2 $Cl])
=E(KM3 $Cz])

= E(K,[Mn $Cn1 $ K1l)

T = MSBTlen(Cn)

where

T = message authentication code, also referred to as the tag
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Tlen = bit length of T

MSBs(X) = the s leftmost bits of the bit stringX

Figure 12.12. Cipher-Based Message Authentication Code (CMAC)
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If the message is not an integer multiple of the cipher block length, then the final block is padded to the right (least significant bits) with a 1
and as many Os as necessary so that the final block is also of length b. The CMAC operation then proceeds as before, except that a
different n-bit key K2 is used instead of K1.

The two n-bit keys are derived from thek-bit encryption key as follows:

L=EK 01

Ki1=L-x

K2:L-x2=(L-x)-x



where multiplication (+) is done in the finite field (Zn) and x and x2 are first and second order polynomials that are elements of GF(Q) Thus

the binary representation of x consists of n - 2 zeros followed by 10; the binary representation 05(2 consists of n - 3 zeros followed by 100.
The finite field is defined with respect to an irreducible polynomial that is lexicographically first among all such polynomials with the

64 28

. ; . . 4 1
minimum possible number of nonzero terms. For the two approved block sizes, the polynomials are andx~  +x  + x3 +x+ 1andx +

x7+x2+x+1.

[Page 374]
To generate K1 and K2 the block cipher is applied to the block that consists entirely of 0 bits. The first subkey is derived from the resulting
cipher text by a left shift of one bit, and, conditionally, by XORing a constant that depends on the block size. The second subkey is derived

,ﬂ\e manner from the first subkey. This property of finite fields of the form GF(2n)was explained in the discussion of MixColumns in
Chapter §.

K==1
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[Page 374 (continued)]

12.5. Recommended Reading and Web Sites

[GILBOJ] examines the security of SHA-256 through SHA-512. Overviews of HMAC can be found inbELL%é and EELL%IJ .

BELL 964 Bellare, M.; Canetti, R.; and Krawczyk, H. "Keying Hash Functions for Message Authentication."
roceedings. CRYPTO '96. August 1996; published by Springer-Verlag. An expanded version is available at

http://www-cse.ucsd.edu/users/mihil.

BELL96b| Bellare, M.; Canetti, R.; and Krawczyk, H. "The HMAC Construction.CryptoBytes, Spring 1996.

ILB0J Gilbert, H. and Handschuh, H. "Security Analysis of SHA-256 and Sisters." Proceedings, CRYPTO '03,
2003; published by Springer-Verlag.

Recommended Web Sites

® NIST Secure Hashing Page: SHA FIPS and related documents
® Whirlpool: Range of information on Whirlpool

® Bjock cipher modes of operation: NIST page with full information on CMAC

=2 wEXT
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[Page 374 (continued)]

12.6. Key Terms, Review Questions, and Problems
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Review Questions

12.1 What is the difference between little-endian and big-endian format?

12.2 What basic arithmetical and logical functions are used in SHA?



12.3

12.4

12.5

Problems

121

12.2

12.3

12.4

What basic arithmetical and logical functions are used in Whirlpool?

Why has there been an interest in developing a message authentication code derived from a cryptographic
hash function as opposed to one derived from a symmetric cipher?

What changes in HMAC are required in order to replace one underlying hash function with another?

In , it is assumed that an array of 80 64-bit words is available to store the values of Wso that they
can be precomputed at the beginning of the processing of a block. Now assume that space is at a premium.
As an alternative, consider the use of a 16-word circular buffer that is initially loaded with WQ through W15
Design an algorithm that, for each step t, computes the required input value W

For SHA-512, show the equations for the values of Wi6,W17, W18, W19

Suppose a1 a2 a3 4 are the 4 bytes in a 32-bit word. Each jacan be viewed as an integer in the range 0 to
255, represented in binary. In a big-endian architecture, this word represents the integer

a1224 + a2216 + a328 +aq

In a little-endian architecture, this word represents the integer

6‘4224 . a3216 . a228 a1

a. Some hash functions, such as MD5, assume a little-endian architecture. It is important that the
message digest be independent of the underlying architecture. Therefore, to perform the modulo
2 addition operation of MD5 or RIPEMD-160 on a big-endian architecture, an adjustment must be
made. Suppose X =x1 X2 x3 x4 and Y =y1 y2 y3 y4. Show how the MD5 addition operation (X +
Y) would be carried out on a big-endian machine.

b. SHA assumes a big-endian architecture. Show how the operation (X + Y) for SHA would be
carried out on a little-endian machine.

This problem introduces a hash function simi in spirit to SHA that operates on letters instead of binary

data. It is called the toy tetragraph hash (tth). 2 Given a message consisting of a sequence of letters, tth
produces a hash value consisting of four letters. First, tth divides the message into blocks of 16 letters,
ignoring spaces, punctuation, and capitalization. If the message length is not divisible by 16, it is padded out
with nulls. A four-number running total is maintained that starts out with the value (0, 0, 0, 0); this is input to
the compression function for processing the first block. The compression function consists of two rounds.
Round 1: Get the next block of text and arrange it as a row-wise 4 x 4 block of text and convert it to numbers
(A=0, B =1, etc.). For example, for the block ABCDEFGHIJKLMNOP, we have:

51| thank William K. Mason, of the magazine staff ofThe Cryptogram, for providing this
example.



E F G H
I J K L
M N ¢} P
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
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Then, add each column mod 26 and add the result to the running total, mod 26. In this example, the running
total is (24, 2, 6, 10). Round 2: Using the matrix from round 1, rotate the first row left by 1, second row left by
2, third row left by 3, and reverse the order of the fourth row. In our example:

B C D A
G H E F
L | J K
P o N M
1 2 3 0
6 7 4 5
11 8 9 10
15 14 13 12

Now, add each column mod 26 and add the result to the running total. The new running total is (5, 7, 9, 11).
This running total is now the input into the first round of the compression function for the next block of text.
After the final block is processed, convert the final running total to letters. For example, if the message is
ABCDEFGHIJKLMNOP, then the hash is FHJL.

a. Draw figures comparable to and to depict the overall tth logic and the

compression function logic.



b. Calculate the hash function for the 48-letter message "I leave twenty million dollars to my friendly
cousin Bill."

c. To demonstrate the weakness of tth, find a 48-letter block that produces the same hash as that
just derived. Hint: Use lots of A's.

125 Develop a table similar to for GF(28) with m(x) = x8 + x4 + x3 + x2 + 1.

12.6

&, E and E_1 mini-boxes in[Table 12.3 in the traditional S-box square matrix format, such as that of
able 5.4

12.7  Verify that is a valid implementation of the S-box shown infable 12.34. Do this by showing the

calculations involved for three input values: 00, 55, 1E.

12.8 Provide a Boolean expression that defines the S-box functionality o.

o
Whirlpool makes use of the construction Hj = E(Hj-1,Mj) Hi-1 Mi-1 Another construction that was

shown by Preneel to be secure is Hj = E(Hj-1,Mj) Mi Now notice that the key schedule for Whirlpool
resembles encryption of the cipher key under a pseudo-key defined by the round constants, so that the core
of the hashing process could be formally viewed as two interacting encryption E(Hi-1,Mj)lines. Consider the
encryption We could write the final round key for this block as K10 = E(RC,Hi-1). Now show that the two hash
constructions are essentially equivalent because of the way that the key schedule is defined.

12.10 At the beginning of , it was noted that given the CBC MAC of a one-block messageX, say T =

MAC(K,X),the adversary immediately knows the CBC MAC for the two-block messageX|(X T)since this
is once again T. Justify this statement.

12.11 In this problem, we demonstrate that for CMAC, a variant that XORs the second key after applying the final
encryption doesn't work. Let us consider this for the case of the message being an integer multiple of the

block size. Then the variant can be expressed as VMAC(K,M) = CBC(K,M) K1. Now suppose an
adversary is able to ask for the MACs of three messages: the message 0 = On, where n is the cipher block
size; the message 1= 1n and the message1]|0. As a result of these three queries the adversary get§ o =
CBC(K,0) 6 K1; T1=CBC(KK,1) K1, and T2 = CBC(K,[CBC(K,1)]) $K1. Show that the adversary can

compute the correct MAC for the (unqueried) message 0O||(To T1).

12.12 In the discussion of subkey generation in CMAC, it states that the block cipher is applied to the block that
consists entirely of 0 bits. The first subkey is derived from the resulting string by a left shift of one bit, and,
conditionally, by XORing a constant that depends on the block size. The second subkey is derived in the
same manner from the first subkey.

a. What constants are needed for block sizes of 64 and 128 bits?

b. Explain how the left shift and XOR accomplishes the desired result.

E=a wExT
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To guard against the baneful influence exerted by strangers is therefore an elementary dictate of savage
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prudence. Hence before strangers are allowed to enter a district, or at least before they are permitted to mingle
freely with the inhabitants, certain ceremonies are often performed by the natives of the country for the purpose of
disarming the strangers of their magical powers, or of disinfecting, so to speak, the tainted atmosphere by which
they are supposed to be surrounded.

The Golden Bough, Sir James George Frazer

Key Points

® A digital signature is an authentication mechanism that enables the creator of a message to attach a code
that acts as a signature. The signature is formed by taking the hash of the message and encrypting the
message with the creator's private key. The sighature guarantees the source and integrity of the message.

® \utual authentication protocols enable communicating parties to satisfy themselves mutually about each
other's identity and to exchange session keys.

® | one-way authentication, the recipient wants some assurance that a message is from the alleged sender.

® The digital signature standard (DSS) is an NIST standard that uses the secure hash algorithm (SHA).

The most important development from the work on public-key cryptography is the digital signature. The digital signature provides a set
of security capabilities that would be difficult to implement in any other way. We begin this chapter with an overview of digital signatures.
Then we look at authentication protocols, many of which depend on the use of the digital signature. Finally, we introduce the Digital
Signature Standard (DSS).

e prey NExT
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[Page 378 (continued)]

13.1. Digital Signatures

Requirements

Message authentication protects two parties who exchange messages from any third party. However, it does not protect the two parties
against each other. Several forms of dispute between the two are possible.

[Page 379]

For example, suppose that John sends an authenticated message to Mary, using one of the schemes . Consider the
following disputes that could arise:

1. Mary may forge a different message and claim that it came from John. Mary would simply have to create a message and
append an authentication code using the key that John and Mary share.

2. John can deny sending the message. Because it is possible for Mary to forge a message, there is no way to prove that John
did in fact send the message.

Both scenarios are of legitimate concern. Here is an example of the first scenario: An electronic funds transfer takes place, and the
receiver increases the amount of funds transferred and claims that the larger amount had arrived from the sender. An example of the
second scenario is that an electronic mail message contains instructions to a stockbroker for a transaction that subsequently turns out
badly. The sender pretends that the message was never sent.

In situations where there is not complete trust between sender and receiver, something more than authentication is needed. The most
attractive solution to this problem is the digital signature. The digital signature is analogous to the handwritten signature. It must have the
following properties:

® |t must verify the author and the date and time of the signature.
® |t must to authenticate the contents at the time of the signature.

® |t must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.

On the basis of these properties, we can formulate the following requirements for a digital signature:

® The signature must be a bit pattern that depends on the message being signed.

® The signature must use some information unique to the sender, to prevent both forgery and denial.
® |t must be relatively easy to produce the digital signature.

® |t mustbe relatively easy to recognize and verify the digital signature.

® |t must be computationally infeasible to forge a digital signature, either by constructing a new message for an existing digital
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signature or by constructing a fraudulent digital signature for a given message.

® |t must be practical to retain a copy of the digital signature in storage.

A secure hash function, embedded in a scheme such as that of orH, satisfies these requirements.

A variety of approaches has been proposed for the digital signature function. These approaches fall into two categories: direct and
arbitrated.

Direct Digital Signature

The direct digital signature involves only the communicating parties (source, destination). It is assumed that the destination knows the

| ic key of the source. A digital signature may be formed by encrypting the enti with the sender's private key (Eigure
[11.14) or by encrypting a hash code of the message with the sender's private keyEiSure 11.53).
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Confidentiality can be provided by further encrypting the entire message plus_signature with either the receiver's public key (public-key
encryption) or a shared secret key (symmetric encryption); for example, see . and‘. Note that it is important to perform
the signature function first and then an outer confidentiality function. In case of dispute, some third party must view the message and its
signature. If the signature is calculated on an encrypted message, then the third party also needs access to the decryption key to read

the original message. However, if the signature is the inner operation, then the recipient can store the plaintext message and its
signature for later use in dispute resolution.

All direct schemes described so far share a common weakness. The validity of the scheme depends on the security of the sender's
private key. If a sender later wishes to deny sending a particular message, the sender can claim that the private key was lost or stolen
and that someone else forged his or her signature. Administrative controls relating to the security of private keys can be employed to
thwart or at least weaken this ploy, but the threat is still there, at least to some degree. One example is to require every signed message
to include a timestamp (date and time) and to require prompt reporting of compromised keys to a central authority.

Another threat is that some private key might actually be stolen from X at time T. The opponent can then send a message signed with
X's signature and stamped with a time before or equal to T.

Arbitrated Digital Signature

The problems associated with direct digital signatures can be addressed by using an arbiter.

As with direct signature schemes, there is a variety of arbitrated signature schemes. In general terms, they all operate as follows. Every
signed message from a sender X to a receiver Y goes first to an arbiter A, who subjects the message and its signature to a number of
tests to check its origin and content. The message is then dated and sent to Y with an indication that it has been verified to the
satisfaction of the arbiter. The presence of A solves the problem faced by direct signature schemes: that X might disown the message.

The arbiter plays a sensitive and crucial role in this sort of scheme, and all parties must have a great deal of trust that the arbitration
mechanism is working properly. The use of a trusted system, described in , might satisfy this requirement.

able 13.1}, based on scenarios described in IgKLBé and MITCQd , gives several examples of arbitrated digital signatures. In the first,

symmetric encryption is used. It is assumed that the sender X and the arbiter A share a secret key Kxa and that A and Y share secret key
Kay. X constructs a messageM and computes its hash value HM). Then X transmits the message plus a signature to A. The signature
consists of an identifier IDX of X plus the hash value, all encrypted usingKxa. A decrypts the signature and checks the hash value to
validate the message. Then A transmits a message to Y, encrypted with Kay. The message includesIDY, the original message from X,



the signature, and a timestamp. Y can decrypt this to recover the message and the signature. The timestamp informs Y that this
message is timely and not a replay. Y can store M and the signature. In case of dispute, Y, who claims to have receivedM from X, sends
the following message to A:

M The following format is used. A communication step in which P sends a messag® to Q is represented as P

_}Q:M.
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E(Kay, IDXIIM|[E(Kxa, IDX|IH(M)]])

Table 13.1. Arbitrated Digital Signature Techniques
(1) X == A: MI[E(Kxa, IDXIHM))
@A™ v. E(Kay, [IDXIIMIIE(Kxa, IDXIIH(M)])IIT])

(a) Conventional Encryption, Arbiter Sees Message
X > A: IDX|[E(Kxy, M)[|E(Kxa, IDX|IH(E(Kxy, M))])

@A % E®Kay,[IDXIIE(Kxy, M)DIIE(Kxa, IDXIIH(E(Kxy, M)IIT])

(b) Conventional Encryption, Arbiter Does Not See Message
1) X —_— A IDX|[E(PRx, IDX|IE(PUy, E(PRx, M))])

(2) A™= V. EPRa, IDXIE(PUy, EPRx, M)IIT])
(c) Public-Key Encryption, Arbiter Does Not See Message

Notation:

X =sender
Y =recipient
A = Arbiter
M = message

T =timestamp

The arbiter uses Kay to recover IDX, M, and the signature, and then usesKxa to decrypt the signature and verify the hash code. In this
scheme, Y cannot directly check X's signature; the signature is there solely to settle disputes. Y considers the message from X authentic
because it comes through A. In this scenario, both sides must have a high degree of trust in A:

® X must trust A not to reveal Kxa and not to generate false signatures of the form EKxa, [IDX||H(M)]).

® v must trust A to send E(Kay, [IDX|IM]IE(Kxa, IDX|[H(M)])||T]) only if the hash value is correct and the signature was



generated by X.

® Both sides must trust A to resolve disputes fairly.

If the arbiter does live up to this trust, then X is assured that no one can forge his signature and Y is assured that X cannot disavow his
signature.

ing scenario also implies that A is able to read messages from X to Y and, indeed, that any eavesdropper is able to do so.
able 13.1H shows a scenario that provides the arbitration as before but also assures confidentiality. In this case it is assumed that X and
Y share the secret key Kxy. Now, X transmits an identifier, a copy of the message encrypted witlikxy, and a signature to A. The signature

consists of the identifier plus the hash value of the encrypted message, all encrypted using Kxa. As before, A decrypts the signature and
checks the hash value to validate the message. In this case, A is working only with the encrypted version of the message and is
prevented from reading it. A then transmits everything that it received from X, plus a timestamp, all encrypted with Kay, to Y.
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Although unable to read the message, the arbiter is still in a position to prevent fraud on the part of either X or Y. A remaining problem,
one shared with the first scenario, is that the arbiter could form an alliance with the sender to deny a signed message, or with the
receiver to forge the sender's signature.

All the problems just discussed can be resolved by going to a public-key scheme, one version of which is shown in . In this
case, X double encrypts a message M first with X's private key, PRx and then with Y's public key,PUy. This is a signed, secret version of
the message. This signed message, together with X's identifier, is encrypted again with PRx and, together withIDY, is sent to A. The
inner, double-encrypted message is secure from the arbiter (and everyone else except Y). However, A can decrypt the outer encryption
to assure that the message must have come from X (because only X has PRx). A checks to make sure that X's private/public key pair is
still valid and, if so, verifies the message. Then A transmits a message to Y, encrypted with PRa. The message includesIDY, the
double-encrypted message, and a timestamp.

This scheme has a number of advantages over the preceding two schemes. First, no information is shared among the parties before
communication, preventing alliances to defraud. Second, no incorrectly dated message can be sent, even if PRy is compromised,
assuming that PRa is not compromised. Finally, the content of the message from X to Y is secret from A and anyone else. However, this
final scheme involves encryption of the message twice with a public-key algorithm. We discuss more practical approaches subsequently.
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13.2. Authentication Protocols

The basic tools described in are used in a variety of applications, including the digital signature discussed i.

Other uses are numerous and growing. In this section, we focus on two general areas (mutual authentication and one-way
authentication) and examine some of the implications of authentication techniques in both.

Mutual Authentication

An important application area is that of mutual authentication protocols. Such protocols enable communicatijng parties to satisfy
themselves mutyally about each other's identity and to exchange session keys. This topic was examined inSection 7.3 (symmetric
techniques) and Bection 10.1 (public-key techniques). There, the focus was key distribution. We return to this topic here to consider the
wider implications of authentication.

Central to the problem of authenticated key exchange are two issues: confidentiality and timeliness. To prevent masquerade and to
prevent compromise of session keys, essential identification and session key information must be communicated in encrypted form. This
requires the prior existence of secret or public keys that can be used for this purpose. The second issue, timeliness, is important
because of the threat of message replays. Such replays, at worst, could allow an opponent to compromise a session key or successfully
impersonate another party. At minimum, a successful  replay can disrupt operations by presenting parties with messages that appear
genuine but are not.
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IGONG9]] lists the following examples of replay attacks:

® Simple replay: The opponent simply copies a message and replays it later.
® Repetition that can be logged: An opponent can replay a timestamped message within the valid time window.

® Repetition that cannot be detected: This situation could arise because the original message could have been suppressed
and thus did not arrive at its destination; only the replay message arrives.

® Backward replay without modification: This is a replay back to the message sender. This attack is possible if symmetric
encryption is used and the sender cannot easily recognize the difference between messages sent and messages received on
the basis of content.

One approach to coping with replay attacks is to attach a sequence number to each message used in an authentication exchange. A
new message is accepted only if its sequence number is in the proper order. The difficulty with this approach is that it requires each party
to keep track of the last sequence number for each claimant it has dealt with. Because of this overhead, sequence numbers are
generally not used for authentication and key exchange. Instead, one of the following two general approaches is used:

® Timestamps: Party A accepts a message as fresh only if the message contains a timestamp that, in A's judgment, is close
enough to A's knowledge of current time. This approach requires that clocks among the various participants be synchronized.

L Challenge/response: Party A, expecting a fresh message from B, first sends B anonce (challenge) and requires that the
subsequent message (response) received from B contain the correct nonce value.

It can be argued (e.g., [LAM924]) that the timestamp approach should not be used for connection-oriented applications because of the
inherent difficulties with this technique. First, some sort of protocol is needed to maintain synchronization among the various processor



clocks. This protocol must be both fault tolerant, to cope with network errors, and secure, to cope with hostile attacks. Second, the
opportunity for a successful attack will arise if there is a temporary loss of synchronization resulting from a fault in the clock mechanism
of one of the parties. Finally, because of the variable and unpredictable nature of network delays, distributed clocks cannot be expected
to maintain precise synchronization. Therefore, any timestamp-based procedure must allow for a window of time sufficiently large to
accommodate network delays yet sufficiently small to minimize the opportunity for attack.

On the other hand, the challenge-response approach is unsuitable for a connectionless type of application because it requires the
overhead of a handshake before any connectionless transmission, effectively negating the chief characteristic of a connectionless
transaction. For such applications, reliance on some_sort of secure time server and a consistent attempt by each party to keep its clocks
in synchronization may be the best approach (e.g., [LAM92H]).
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Symmetric Encryption Approaches

As was discussed in, a two-level hierarchy of symmetric encryption keys can be used to provide confidentiality for
communication in a distributed environment. In general, this strategy involves the use of a trusted key distribution center (KDC). Each
party in the network shares a secret key, known as a master key, with the KDC. The KDC is responsible for generating keys to be used
for a short time over a connection between two parties, known as session keys, and for distributing those keys using the master keys to
protect the distribution. This approach is quite common. As an example, we look at the Kerberos system in[Chapter 14. The discussion in
this subsection is relevant to an understanding of the Kerberos mechanisms.

illustrates a proposal initially put forth by Needham and Schroeder [NEED7{] for secret key distribution using a KDC that, as

was mentioned in [Chapter 4, includes authentication features. The protocol can be summarized as follows:

1 w— o IDAJIIDB|INL

2. KDC =¥ A. E(Ka, [Ks|IIDBIIN1/[E(Kb, [Ks[IIDA]])
3. — E(Kb, [Ks||IDA])

4. — E(Ks, N2)

5. — g E(Ks, f(N2))

Secret keys Ka and Kp are shared between A and the KDC and B and the KDC, respectively. The purpose of the protocol is to distribute
securely a session key Ks to A and B. A securely acquires a new session key in step 2. The message in step 3 can be decrypted, and
hence understood, only by B. Step 4 reflects B's knowledge of Ks, and step 5 assures B of A's knowledge ofKs and assures B that this is
a fresh message because of the use of the nonce N2. Recall from our discussion in that the purpose of steps 4 and 5 is to
prevent a certain type of replay attack. In particular, if an opponent is able to capture the message in step 3 and replay it, this might in
some fashion disrupt operations at B.

Despite the handshake of steps 4 and 5, the protocol is still vulnerable to a form of replay attack. Suppose that an opponent, X, has been
able to compromise an old session key. Admittedly, this is a much more unlikely occurrence than that an opponent has simply observed
and recorded step 3. Nevertheless, it is a potential security risk. X can impersonate A and trick B into using the old key by simply
replaying step 3. Unless B remembers indefinitely all previous session keys used with A, B will be unable to determine that this is a
replay. If X can intercept the handshake message, step 4, then it can impersonate A's response, step 5. From this point on, X can send
bogus messages to B that appear to B to come from A using an authenticated session key.

Denning [DENN81, DENN8J] proposes to overcome this weakness by a modification to the Needham/Schroeder protocol that includes
the addition of a timestamp to steps 2 and 3. Her proposal assumes that the master keys, Ka and Kp are secure, and it consists of the

following steps:
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1 po==pc. IDA|lIDB

s E(Ka, [KsIIDBIITIIE(Kb, KsllIDAIITD)
3. A= g E(Kb, [Ks||IDAIIT)

4, g — E(Ks, N1)
N e E(Ks, f(N1))

T is a timestamp that assures A and B that the session key has only just been generated. Thus, both A and B know that the key
distribution is a fresh exchange. A and B can verify timeliness by checking that

|Clock T| < Dt1 + Dt2

where Dt] is the estimated normal discrepancy between the KDC's clock and the local clock (at A or B) anBt2 is the expected network
delay time. Each node can set its clock against some standard reference source. Because the timestamp T is encrypted using the
secure master keys, an opponent, even with knowledge of an old session key, cannot succeed because a replay of step 3 will be
detected by B as untimely.

A final point: Steps 4 and 5 were not included in the original presentation [DENN81J] but were added later DENN8J]. These steps confirm
the receipt of the session key at B.

The Denning protocol seems to provide an increased degree of security compared to the Needham/Schroeder protocol. However, a new
concern is raised: namely, that this new scheme requires reliance on clocks that are synchronized throughout the network. [[GONG94
points out a risk involved. The risk is based on the fact tthe distributed clocks can become unsynchronized as a result of sabotage on

or faults in the clocks or the synchronization mechanism. £ The problem occurs when a sender's clock is ahead of the intended
recipient's clock. In this case, an opponent can intercept a message from the sender and replay it later when the timestamp in the
message becomes current at the recipient's site. This replay could cause unexpected results. Gong refers to such attacks as

suppress-replay attacks.

Pl sych things can and do happen. In recent years, flawed chips were used in a number of computers and other
electronic systems to track the time and date. The chips had a tendency to skip forward one day [NEUM9(].

One way to counter suppress-replay attacks is to enforce the requirement that parties regularly check their clocks against the KDC's
clock. The other alternative, which avoids the need for clock synchronization, is to rely on handshaking protocols using nonces. This
latter alternative is not vulnerable to a suppress-replay attack because the nonces the recipient will choose in the future are

unpredictable to the sender. The Needham/Schroeder protocol relies on nonces only but, as we have seen, has other vulnerabilities.

In [KEHN9Y], an attempt is made to respond to the concerns about suppress-replay attacks and at the same time fix the problems in the
Needham/Schder protocol. Subsequently, an inconsistency in this latter protocol was noted and an improved strategy was presented
3

in [NEUM934].— The protocol is as follows:

B3l ¢ really is hard to get these things right.

N IDAINa

2. p==3pc: IDB|NbI|E(Kb, [IDA||Nal[Th])



3. kpC == A E(Ka, [IDBI|Nal[Ks|[Tb)I|E(Kb,IDAIKs|[Tb])|INb

4, p— g E(Kb, [IDAIIKs|TBDIIE(Ks, Nb)
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Let us follow this exchange step by step.

1. A initiates the authentication exchange by generating a nonce, Na, and sending that plus its identifier to B in plaintext. This
nonce will be returned to A in an encrypted message that includes the session key, assuring A of its timeliness.

2. B alerts the KDC that a session key is needed. Its message to the KDC includes its identifier and a nonce, Np This nonce will
be returned to B in an encrypted message that includes the session key, assuring B of its timeliness. B's message to the KDC
also includes a block encrypted with the secret key shared by B and the KDC. This block is used to instruct the KDC to issue
credentials to A; the block specifies the intended recipient of the credentials, a suggested expiration time for the credentials,
and the nonce received from A.

3. The KDC passes on to A B's nonce and a block encrypted with the secret key that B shares with the KDC. The block serves as
a "ticket" that can be used by A for subsequent authentications, as will be seen. The KDC also sends to A a block encrypted
with the secret key shared by A and the KDC. This block verifies that B has received A's initial message (DB) and that this is a
timely message and not a replay (Na) and it provides A with a session key Ks) and the time limit on its use (Th).

4. A transmits the ticket to B, together with the B's nonce, the latter encrypted with the session key. The ticket provides B with the
secret key that is used to decrypt E(Ks, Np) to recover the nonce. The fact that B's nonce is encrypted with the session key
authenticates that the message came from A and is not a replay.

This protocol provides an effective, secure means for A and B to establish a session with a secure session key. Furthermore, the protocol
leaves A in possession of a key that can be used for subsequent authentication to B, avoiding the need to contact the authentication
server repeatedly. Suppose that A and B establish a session using the aforementioned protocol and then conclude that session.
Subsequently, but within the time limit established by the protocol, A desires a new session with B. The following protocol ensues:

1 p g E(Kb, IDAIIKsIITEDIIN
2. p— N'bl|E(Ks, N'a)
3. p— g E(Ks, N'b)

When B receives the message in step 1, it verifies that the ticket has not expired. The newly generated nonces N'a and N'p assure each
party that there is no replay attack.

In all the foregoing, the time specified in Th is a time relative to B's clock. Thus, this timestamp does not require synchronized clocks
because B checks only self-generated timestamps.

Public-Key Encryption Approaches



In , we presented one approach to the use of public-key encryption for the purpose of session key distribution.

This protocol assumes that each of the two parties is in possession of the current public key of the other. It may not be practical to
require this assumption.
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A protocol using timestamps is provided in ||
2. as — A E(PRas, IDA[IPUal[TDIIE(PRas, [IDB|[PUbIIT])
3. A=} E(PRas, [IDA|IPUalIT])|[E(PRas, IDBJIPUbIIT])

[IE(PUp, E(PRa, [Ks||T]))

In this case, the central system is referred to as an authentication server (AS), because it is not actually responsible for secret key
distribution. Rather, the AS provides public-key certificates. The session key is chosen and encrypted by A; hence, there is no risk of
exposure by the AS. The timestamps protect against replays of compromised keys.

This protocol is compact but, as before, requires synchronization of clocks. Another approach, proposed by Woo and Lam (WO0924],
makes use of nonces. The protocol consists of the following steps:

2. Kpc == . E(PRauth, [IDBIIPUb])

3. p— g E(PUb, NallIDA)

4, p—ic. IDA||IDB|E(PUauth, Na)

5. Kpc == g. E(PRauth, IDA/[PUa])[|E(PUb, E(PRauth, Nal[Ks]lIDB]))
6. p— . E(PUa, E(PRauth, [(Nalls|lIDB)|INb])

7. p — E(Ks, Nb)

In step 1, A informs the KDC of its intention to establish a secure connection with B. The KDC returns to A a copy of B's public-key
certificate (step 2). Using B's public key, A informs B of its desire to communicate and sends a nonce Nga (step 3). In step 4, B asks the
KDC for A's public-key certificate and requests a session key; B includes A's nonce so that the KDC can stamp the session key with that
nonce. The nonce is protected using the KDC's public key. In step 5, the KDC returns to B a copy of A's public-key certificate, plus the
information {Na, Ks, IDB}. This information basically says thatKs is a secret key generated by the KDC on behalf of B and tied td\g; the
binding of Ks and Na will assure A thatKs is fresh. This triple is encrypted, using the KDC's private key, to allow B to verify that the triple
is in fact from the KDC. It is also encrypted using B's public key, so that no other entity may use the triple in an attempt to establish a
fraudulent connection with A. In step 6, the triple {Na, Ks, IDB}, still encrypted with the KDC's private key, is relayed to A, together with a
nonce Np generated by B. All the foregoing are encrypted using A's public key. A retrieves the session keis and uses it to encryptNp
and return it to B. This last message assures B of A's knowledge of the session key.

This seems to be a secure protocol that takes inig account the various attacks. However, the authors themselves spotted a flaw and
submitted a revised version of the algorithm in [WOQ92H]:
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2. e Y E(PRauth, [DB||PUb])
3. i E(PUb, [NallIDA])
4. g Dc. IDA|[IDB||E(PUauth, Na)
5. KDC == o. E(PRauth, [DAIIPUa))[|E(PUb, E(PRauth, [Nal[Ks||IDA/IDB])
6. g — . E(PUa, E(PRauth, [(NallKs|lIDAI|IDB)IINb]))

7. P — E(Ks, Nb)

The identifier of A, IDA, is added to the set of items encrypted with the KDC's private key in steps 5 and 6. This binds the session keys to
the identities of the two parties that will be engaged in the session. This inclusion of IDA accounts for the fact that the nonce valueNa is
considered unique only among all nonces generated by A, not among all nonces generated by all parties. Thus, it is the pair {DA, Na}
that uniquely identifies the connection request of A.

In both this example and the protocols described earlier, protocols that appeared secure were revised after additional analysis. These
examples highlight the difficulty of getting things right in the area of authentication.

One-Way Authentication

One application for which encryption is growing in popularity is electronic mail (e-mail). The very nature of electronic mail, and its chief
benefit, is that it is not necessary for the sender and receiver to be online at the same time. Instead, the e-mail message is forwarded to
the receiver's electronic mailbox, where it is buffered until the receiver is available to read it.

The "envelope" or header of the e-mail message must be in the clear, so that the message can be handled by the store-and-forward
e-mail protocol, such as the Simple Mail Transfer Protocol (SMTP) or X.400. However, it is often desirable that the mail-handling protocol
not require access to the plaintext form of the message, because that would require trusting the mail-handling mechanism. Accordingly,
the e-mail message should be encrypted such that the mail-handling system is not in possession of the decryption key.

A second requirement is that of authentication. Typically, the recipient wants some assurance that the message is from the alleged
sender.

Symmetric Encryption Approach

Using symmetric encryption, the decentralized key distribution scenario illustrated in is impractical. This scheme requires the
sender to issue a request to the intended recipient, await a response that includes a session key, and only then send the message.

With some refinement, the KDC strategy illustrated in is a candidate for encrypted electronic mail. Because we wish to avoid
requiring that the recipient (B) be on line at the same time as the sender (A), steps 4 and 5 must be eliminated. For a message with



content M, the sequence is as follows:

1 =) IDA[IDB|IN1
2. kpc _} A: E(Ka, [Ks||IDBJIN1||E(Kb, [Ks||IDAD])
3. p—p E(Kb, [KslIIDADIIE(Ks, M)

This approach guarantees that only the intended recipient of a message will be able to read it. It also provides a level of authentication
that the sender is A. As specified, the protocol does not protect against replays. Some measure of defense could be provided by
including a timestamp with the message. However, because of the potential delays in the e-mail process, such timestamps may have
limited usefulness.
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Public-Key Encryption Approaches

ption ar
of the entire message for confidentiality 1
that either the sender know the recipient's public key (confidentiality) or the recipient know the sender's public key (authentication) or
both (confidentiality plus authentication). In addition, the public-key algorithm must be applied once or twice to what may be a long
message.

We have already presented public-key en approaches that are suited to electronic majl_including the straightforward encryption
), authentication ( , or both (Eigure 11.1d). These approaches require

If confidentiality is the primary concern, then the following may be more efficient:
A ¥ o E(PUb. Ks)I|E(Ks, M)

In this case, the message is encrypted with a one-time secret key. A also encrypts this one-time key with B's public key. Only B will be
able to use the corresponding private key to recover the one-time key and then use that key to decrypt the message. This scheme is
more efficient than simply encrypting the entire message with B's public key.

If authentication is the primary concern, then a digital signature may suffice, as was illustrated in :
A i B:M||E(PRa, HM))

This method guarantees that A cannot later deny having sent the message. However, this technique is open to another kind of fraud.
Bob composes a message to his boss Alice that contains an idea that will save the company money. He appends his digital signature
and sends it into the e-mail system. Eventually, the message will get delivered to Alice's mailbox. But suppose that Max has heard of
Bob's idea and gains access to the mail queue before delivery. He finds Bob's message, strips off his signature, appends his, and
requeues the message to be delivered to Alice. Max gets credit for Bob's idea.

To counter such a scheme, both the message and signature can be encrypted with the recipient's public key:
A > B: EPUb, M|IE(PRa, HM))])

The latter two schemes require that B know A's public key and be convinced that it is timely. An effective way to provide this assurance
is the digital certificate, described in Chapter 14. Now we have

A= BMI||E(PRa, HM))IIE(PRas, [TIIIDA|IPUa])

In addition to the message, A sends B the signature, encrypted with A's private key, and A's certificate, encrypted with the private key of



the authentication server. The recipient of the message first uses the certificate to obtain the sender's public key and verify that it is
authentic and then uses the public key to verify the message itself. If confidentiality is required, then the entire message can be

encrypted with B's public key. Alternatively, the entire message can be encrypted with a one-time secret key; the secret key is also
transmitted, encrypted with B's public key. This approach is explored in .
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13.3. Digital Signature Standard

The National Institute of Standards and Technology (NIST) has published Federal Information Processing S PS 186, known as
the Digital Signature Standard (DSS). The DSS makes use of the Secure Hash Algorithm (SHA) described inEhaLéter 14 and presents a
new digital signature technique, the Digital Signature Algorithm (DSA). The DSS was originally proposed in 1991 and revised in 1993 in
response to public feedback concerning the security of the scheme. There was a further minor revision in 1996. In 2000, an expanded
version of the standard was issued as FIPS 186-2. This latest version also incorporates digital signature algorithms based on RSA and on
elliptic curve cryptography. In this section, we discuss the original DSS algorithm.

The DSS Approach

The DSS uses an algorithm that is designed to provide only the digital signature function. Unlike RSA, it cannot be used for encryption or
key exchange. Nevertheless, it is a public-key technique.

contrasts the DSS approach for generating digital signatures to that used with RSA. In the RSA approach, the message to be
signed is input to a hash function that produces a secure hash code of fixed length. This hash code is then encrypted using the sender's
private key to form the signature. Both the message and the signature are then transmitted. The recipient takes the message and
produces a hash code. The recipient also decrypts the signature using the sender's public key. If the calculated hash code matches the
decrypted signature, the signature is accepted as valid. Because only the sender knows the private key, only the sender could have
produced a valid signature.

Figure 13.1. Two Approaches to Digital Signatures

iViEW full size imaqei
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The DSS approach also makes use of a hash function. The hash code is provided as input to a signature function along with a random
number k generated for this particular signature. The signature function also depends on the sender's private key (PRa)and a set of

parameters known to a group of communicating principals. We can consider this set to constitute a global public key (PUG). 4 The result
is a signature consisting of two components, labeled s andr.

1t is also possible to allow these additional parameters to vary with each user so that they are a part of a user's
public key. In practice, it is more likely that a global public key will be used that is separate from each user's public
key.
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At the receiving end, the hash code of the incoming message is generated. This plus the signature is input to a verification function. The
verification function also depends on the global public key as well as the sender's public key (PUg), which is paired with the sender's
private key. The output of the verification function is a value that is equal to the signature componentr if the signature is valid. The
signature function is such that only the sender, with knowledge of the private key, could have produced the valid signature.

We turn now to the details of the algorithm.

The Digital Signature Algorithm

The DSA 0n the difficuluting discrete logarithms (see ) and is based on schemes originally presented by

ElGamal d LGA84] and Schnorr ECHN91)].

summarizes the algorithm. There are three parameters that are public and can be common to a group of users. A 160-bit prime
number g is chosen. Next, a prime numberp is selected with a length between 512 and 1024 bits such that) divides (p 1). Finally,g is



h(pl)/q mod p where his an integer between 1 and ¢ 1) with the restriction thatg must be greater than 1-

chosen to be of the form

Bl number-theoretic terms, g is of order g modp; see .
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Figure 13.2. The Digital Signature Algorithm (DSA)
(This item is displayed on page 391 in the print version)

Global Public-Key Components

P prime number where 2L L <p< 2L for 512 E L E 1024 and L a multiple of 64; i.e., bit length of between 512 and 1024
bits in increments of 64 bits
q prime divisor of (p 1), where 2159 <Qg< 2160; i.e., bit length of 160 bits
9 = h(p Dl mod p, where h is any integer with 1 <h < (p 1) such that h(p i modp>1
User's Private Key
X random or pseudorandom integer with 0 <x < q
User's Public Key
y = gX mod p
User's Per-Message Secret Number
k = random or pseudorandom integer with 0 <k < q
Signing
' = (gk mod p) mod q
S -1
=[k ™ (H(M) +xr)] mod q
Signature = (r, s)
Verifying
W = (s')_1 mod q
ul = [H(M")w] modq
u2 =(r)w modq
v ul u
= [(¢"*y"? mod p] modg
TEST:v=r'
M = message to be signed
H(M) = hash of M using SHA-1

M, r, s' = received versions of M, r, s



With these numbers in hand, each user selects a private key and generates a public key. The private key x must be a number from 1 to §

1) and should be chosen randomly or pseudorandomly. The public key is calculated from the private key as 'y = gx mod p. The calculation
of y given x is relatively straightforward. However, given the public keyy, it is believed to be computationally infeasible to determinex, which

is the discrete logarithm of y to the base g, mod p (see Chapter

To create a signature, a user calculates two quantities, r and s, that are functions of the public key components |, q, g), the user's private
key (x), the hash code of the message, HM), and an additional integerk that should be generated randomly or pseudorandomly and be

unique for each signing.

At the receiving end, verification is performed using the formulas shown in . The receiver generates a quantityv that is a
function of the public key components, the sender's public key, and the hash code of the incoming message. If this quantity matches ther

component of the signature, then the signature is validated.

depicts the functions of signing and verifying.

Figure 13.3. DSS Signing and Verifying
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The structure of the algorithm, as revealed in , is quite interesting. Note that the test at the end is on the value, which does not
depend on the message at all. Instead, r is a function ofk and the three global public-key components. The multiplicative inverse ofk (mod
q) is passed to a function that also has as inputs the message hash code and the user's private key. The structure of this function is such

that the receiver can recover r using the jncoming message and signature, the public key of the user, and the global public key. It is
certainly not obvious from or Eigure 13.9 that such a scheme would work. A proof is provided at this book's Web site.
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Given the difficulty of taking discrete logarithms, it is infeasible for an opponent to recoverk fromr or to recover x from s.

Another point worth noting is that the only computationally demanding task in signature generation is the exponential calculationg” modp.
Because this value does not depend on the message to be signed, it can be computed ahead of time. Indeed, a user could precalculate a
number of values of r to be used to sign documents as needed. The only other somewhat demanding task is the determination of a

o 1 .
multiplicative inverse, K™. Again, a number of these values can be precalculated.

K==1 ExT
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[Page 393 (continued)]

13.4. Recommended Reading and Web Sites

|| is the classic paper on digital signatures and is still highly relevant. A more recent, and excellent, survey igMITC97].

Akl, S. "Digital Signatures: A Tutorial Survey."Computer, February 1983.

ITC99 Mitchell, C.; Piper, F. ; and Wild, P. "Digital Signatures." InIMM924].

.. _Recommended Web Sites

® Digital Signatures: NIST page with information on NIST-approved digital signature options
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13.5. Key Terms, Review Questions, and Problems

Key Terms

Erbitrated digital signaturé

hirect digital signaturé

bigital signature algorithm gDSAi
higital signature standard gDSSI

Inutual authenticatioA

l)ne-wav authenticatiorl

Euggress-reglay attacd
imestamg
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Review Questions

13.1 List two disputes that can arise in the context of message authentication.

13.2 What are the properties a digital signature should have?



13.3 What requirements should a digital signature scheme satisfy?

13.4 What is the difference between direct and arbitrated digital signature?

13.5 In what order should the signature function and the confidentiality function be applied to a message, and why?
13.6 What are some threats associated with a direct digital signature scheme?

13.7 Give examples of replay attacks.

13.8 List three general approaches to dealing with replay attacks.

13.9 What is a suppress-replay attack?

Problems

131 Modify the digital signature techniques of[Table 13.14 and b to enable the receiver to verify the signature.
13.2 Modify the digital signature technique of[lable 13.1dto avoid triple encryption of the entire message.

13.3 In discussing [Table 13.14, it was stated that alliances to defraud were impossible. In fact, there is one
possibility. Describe it and explain why it would have so little credibility that we can safely ignore it.

13.4 In , we outlined the public-key scheme proposed infyO0924d] for the distribution of secret keys.

The revised version includes IDA in steps 5 and 6. What attack, specifically, is countered by this revision?

135 The protocol referred to in Problem 13.79 can be reduced from seven steps to five, having the following
sequence:

(1) A .
2 B — KDC:
3) KDC —_— B:
@ e Y
5) o A

Show the message transmitted at each step. Hint: The final message in this protocol is the same as the final
message in the original protocol.



13.6

13.7

13.8

With reference to the suppress-replay attack described in :

a. Give an example of an attack when a party's clock is ahead of that of the KDC.

b. Give an example of an attack when a party's clock is ahead of that of another party.

There are three typical ways to use nonces as challenges. Suppose Na is a nonce generated by A, A and B
share key K, and f() is a function such as increment. The three usages are

Usage 1 Usage 2 Usage 3

(1)A_}B:Na (1)A_} B: E(K, Na) (1)A_:-' B: E(K, Na)
(2)B —_ EK, Na) (2B —_ A:Na (2)B —_ EK, f(Na))

Describe situations for which each usage is appropriate.

Dr. Watson patiently waited until Sherlock Holmes finished. "Some interesting problem to solve, Holmes?" he
asked when Holmes finally logged out.

"Oh, not exactly. | merely checked my e-mail and then made a couple of network experiments instead of my
usual chemical ones. | have only one client now and | have already solved his problem. If | remember
correctly, you once mentioned cryptology among your other hobbies, so it may interest you."
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"Well, | am only an amateur cryptologist, Holmes. But of course | am interested in the problem. What is it
about?"

"My client is Mr. Hosgrave, director of a small but progressive bank. The bank is fully computerized and of
course uses network communications extensively. The bank already uses RSA to protect its data and to
digitally sign documents that are communicated. Now the bank wants to introduce some changes in its
procedures; in particular, it needs to digitally sign some documents by two signatories so that

1. The first signatory prepares the document, forms its signature, and passes the document to the
second signatory.

2. The second signatory as a first step must verify that the document was really signed by the first
signatory. She then incorporates her signature into the document's signature so that the recipient,
as well as any member of the public, may verify that the document was indeed signed by both
signatories. In addition only the second signatory has to be able to verify the document's
signature after the step (1); that is the recipient (or any member of the public) should be able to
verify only the complete document with signatures of both signatories, but not the document in its
intermediate form where only one signatory has signed it. Moreover, the bank would like to make
use of its existing modules that support RSA-style digital signatures.”

"Hm, | understand how RSA can be used to digitally sign documents by one signatory, Holmes. | guess you
have solved the problem of Mr. Hosgrave by appropriate generalization of RSA digital signatures.”

"Exactly, Watson," nodded Sherlock Holmes. "Originally, the RSA digital signature was formed by encrypting
the document by the signatory's private decryption key 'd’, and the signature could be verified by anyone
through its decryption using publicly known encryption key 'e'. One can verify that the signature S was



13.9

13.10

13.11

13.12

13.13

formed by the person who knows d, which is supposed to be the only signatory. Now the problem of Mr.
Hosgrave can be solved in the same way by slight generalization of the process, that is..."

Finish the explanation.

DSA specifies that if the signature generation process results in a value of s = 0, a new value ofk should be
generated and the signature should be recalculated. Why?

What happens if ak value used in creating a DSA signature is compromised?

The DSS document includes a recommended algorithm for testing a number for primality, as follows:

1. [Choose w] Letw be a random odd integer. Then (v 1) is even and can be expressed in the form

Za m with m odd. That is, Za is the largest power of 2 that divides (v 1).

2. [Generate b] Letb be a random integer in the range 1 <b <w.

3. [Exponentiate] Setj=0andz = b™ modw.
4. [Done?]Ifj=0andz =1, orifz=w 1, thenw passes the test and may be prime; go to step 8.

5. [Terminate?] Ifj > 0 andz = 1, thenw is not prime; terminate algorithm for thisw.

6. [Increasej] Setj=j+1.Ifj<a, setz= 22 modw and go to step 4.
7. [Terminate] w is not prime; terminate algorithm for thisw.

8. [Test again?] If enough random values ofb have been tested, then acceptw as prime and
terminate algorithm; otherwise, go to step 2.

a. Explain how the algorithm works.

b. Show that it is equivalent to the Miller-Rabin test described in

With DSS, because the value of k is generated for each signature, even if the same message is signed twice
on different occasions, the signatures will differ. This is not true of RSA signatures. What is the practical
implication of this difference?
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Consider the problem of creating domain parameters for DSA. Suppose we have already found primes p and
g such thatg|(p 1). Now we need to findg E Zp with g of order g mod p. Consider the following two algorithms:

Algorithm 1 Algorithm 2
repeat repeat
select gEZp select hEZp
h #=g" modp g — WP D 104 p




Algorithm 1 Algorithm 2

until (h:landgil) until (g#l)

return g return g

a. Prove that the value returned by Algorithm 1 has orderq.
b. Prove that the value returned by Algorithm 1 has orderg.

c. Suppose P =40193 andq = 157. How many loop iterations do you expect Algorithm 1 to make
before it finds a generator?

d. Ifpis 1024 bits andqis 160 bits, would you recommend using Algorithm 1 to findg? Explain.

e. Suppose P =40193 andq = 157. What is the probability that Algorithm 2 computes a generator in

Se(d)=n

its very first loop iteration? (if it is helpful, you may use the fact that dn

when answering this question).

13.14 It is tempting to try to develop a variation on Diffie-Hellman that could be used as a digital signature. Here is
one that is simpler than DSA and that does not require a secret random number in addition to the private key.

Public elements:

g prime number

a a<gandais a primitive root ofq
Private key:

X X<q

Public key:

= ax mod g

To sign a message M, compute h = H(M), the hash code of the message. We require that gcdl, g 1) = 1. If
not, append the hash to the message and calculate a new hash. Continue this process until a hash code is

produced that is relatively prime to (q 1). Then calculateZ to satisfy Z x h == X(mod q 1). The signature of

the message is az. To verify the signature, a user verifies thay = (az)h = aX mod g.

a. Show that this scheme works. That is, show that the verification process produces an equality if
the signature is valid.

b. Show that the scheme is unacceptable by describing a simple technique for forging a user's
signature on an arbitrary message.



13.15 An early proposal for a digital signature scheme using symmetric encryption is based on the following: To
sign an n-bit message, the sender randomly generates in advance 2n 56-bit cryptographic keys:

k1, K1, k2, K2,...,kn, Kn

which are kept secret. The sender prepares in advance two sets of corresponding nonsecret 64-bit validation
parameters, which are made public:

ul, Vi, u2, V2,...,un,Vn andvl, V1, v2, V2,...,vn,Vn
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where
vi = E(Ki, ui), Vi = E(ki, Ui

The message M is signed as follows. For thei th bit of the message, eitherki or Ki is attached to the
message, depending on whether the message bit is 0 or 1. For example, if the first three bits of the message
are 011, then the first three keys of the signature are k1, K2, K3.

a. How does the receiver validate the message?
b. Is the technique secure?
c. How many times can the same set of secret keys be safely used for different messages?

d. What, if any, practical problems does this scheme present?

e prey | NEXT B
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Part Three: Network Security Applications

In practice, the effectiveness of a countermeasure often depends on how it is used; the
best safe in the world is worthless if no one remembers to close the door.

Computers at Risk: Safe Computing in the Information Age, National Research Council,
1991

Increased use of computer and communications networks, computer literacy, and
dependence on information technology heighten U.S. industry's risk of losing proprietary
information to economic espionage. In part to reduce the risk, industry is more frequently
using hardware and software with encryption capabilities.

Communications Privacy: Federal Policy and Actions. General Accounting Office Report
GAO/0SI-94-2, November 1993

In the first two parts, we examined various ciphers and their use for confidentiality, authentication, key exchange,
and related functions. Part Three surveys important network security tools and applications that make use of these
functions. These applications can be used across a single network, a corporate intranet, or the Internet.
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Road Map for Part Three

: Authentication Applications

is a survey of two of the most important authentication specifications in current use.
Kerberos is an authentication protocol based on conventional encryption that has received
widespread support and is used in a variety of systems X.509 specifies an authentication algorithm
and defines a certificate facility. The latter enables users to obtain certificates of public keys so
that a community of users can have confidence in the validity of the public keys. This facility is
employed as a building block in a number of applications.
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: Electronic Mail Security

The most heavily used distributed application is electronic mail, and there is increasing ij i
providing authentication and confidentiality services as part of an electronic mail facility..Chazter la
looks at the two approaches likely to dominate electronic mail security in the near future. Pretty
Good Privacy (PGP) is a widely used scheme that does not depend on any organization or
authority. Thus, it is as well suited to individual, personal use as it is to incorporation in network
configurations operated by organizations. S/IMIME (Secure/Multipurpose Internet Mail Extension)
was developed specifically to be an Internet Standard.

: IP Security

The Internet Protocol (IP) is the central element in the Internet and private intranets. Security at the

] cordingly, is important to the design of any internetwork-based security scheme.
Chapter 16 looks at the IP security scheme that has been developed to operate both with the
current IP and the emerging next-generation IP, known as IPv6.

: Web Security

The explosive growth in the use of the World Wide Web for electronic commerce_and to
disseminate information has generated the need for strong Web-based security.
provides a survey of this important new security area and looks at two key standards: Secure
Sockets Layer (SSL) and Secure Electronic Transaction (SET).

NEXT B
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Chapter 14. Authentication Applications

14.1 Kerberos

otivatio
erberos Version 4
erberos Version J

I14.2 X.509 Authentication Servicel

IAuthentication Proceduresl

X.509 Version

Il4.3 Public-Key Infrastructurel

L’KIX Management FunctionJ

lDKIX Management Protocolsl

h4.4 Recommended Reading and Web Sitesl

Il4.5 Key Terms, Review Questions, and Problemsj

ey Termg
Review Questiong
Problemg

lAppendix 14A Kerberos Encryption Techniquesl

l’assword-to-Key Transformatior{

lDropaqatinq Cipher Block Chaining Model
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We cannot enter into alliance with neighboring princes until we are acquainted with their designs.

The Art of War, Sun Tzu

Key Points

® Kerberosis an authentication service designed for use in a distributed environment.

® Kerberos makes use of a trusted third-part authentication service that enables clients and servers to
establish authenticated communication.

® X509 defines the format for public-key certificates. This format is widely used in a variety of applications.

® A public key infrastructure (PKI) is defined as the set of hardware, software, people, policies, and
procedures needed to create, manage, store, distribute, and revoke digital certificates based on asymmetric

cryptography.

° Typically, PKI implementations make use of X.509 certificates.

This chapter examines some of the authentication functions that have been developed to support application-level authentication and
digital signatures.

We begin by looking at one of the earliest and also one of the most widely used services: Kerberos. Next, we examine the X.509
directory authentication service. This standard is important as part of the directory service that it supports, but is also a basic building
block used in other standards, such as S/IMIME, discussed in . Finally, this chapter examines the concept of a public-key
infrastructure (PKI).

=2 wEXT
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[Page 401 (continued)]
14.1. Kerberos

Kerberog is an authentication service developed as part of Project Athena at MIT. The problem that Kerberos addresses is this: Assume
an open distributed environment in which users at workstations wish to access services on servers distributed throughout the network. We
would like for servers to be able to restrict access to authorized users and to be able to authenticate requests for service. In this
environment, a workstation cannot be trusted to identify its users correctly to network services. In particular, the following three threats
exist:

Min Greek mythology, a many headed dog, commonly three, perhaps with a serpent's tail, the guardian of the
entrance of Hades." From Dictionary of Subjects and Symbols in Art, by James Hall, Harper & Row, 1979. Just as
the Greek Kerberos has three heads, the modern Kerberos was intended to have three components to guard a
network's gate: authentication, accounting, and audit. The last two heads were never implemented.

® Auser may gain access to a particular workstation and pretend to be another user operating from that workstation.
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® Auser may alter the network address of a workstation so that the requests sent from the altered workstation appear to come
from the impersonated workstation.

® Auser may eavesdrop on exchanges and use a replay attack to gain entrance to a server or to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access to services and data that he or she is not authorized to access.
Rather than building in elaborate authentication protocols at each server, Kerberos provides a centralized authentication server whose
function is to authenticate users to servers and servers to users. Unlike most other authentication schemes described in this book,
Kerberos relies exclusively on symmetric encryption, making no use of public-key encryption.

Two versions of Kerberos are in common use. Version 4 [MILL84, BTEI8g] implementations still exist. Ver 5 KOHL94] corrects some

of the security deficiencies of version 4 and has been issued as a proposed Internet Standard (RFC 1510).
2 Versions 1 through 3 were internal development versions. Version 4 is the "original” Kerberos.

We begin this section with a brief discussion of the motivation for the Kerberos approach. Then, because of the complexity of Kerberos, it
is best to start with a description of the authentication protocol used in version 4. This enables us to see the essence of the Kerberos
strategy without considering some of the details required to handle subtle security threats. Finally, we examine version 5.

Motivation

If a set of users is provided with dedicated personal computers that have no network connections, then a user's resources and files can be
protected by physically securing each personal computer. When these users instead are served by a centralized time-sharing system, the
time-sharing operating system must provide the security. The operating system can enforce access control policies based on user identity
and use the logon procedure to identify users.
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Today, neither of these scenarios is typical. More common is a distributed architecture consisting of dedicated user workstations (clients)
and distributed or centralized servers. In this environment, three approaches to security can be envisioned:

1. Rely on each individual client workstation to assure the identity of its user or users and rely on each server to enforce a security
policy based on user identification (ID).

2. Require that client systems authenticate themselves to servers, but trust the client system concerning the identity of its user.

3. Require the user to prove his or her identity for each service invoked. Also require that servers prove their identity to clients.

In a small, closed enﬂonment, in which all systems are owned and operated by a single organization, the first or perhaps the second

strategy may suffice. 2 But in a more open environment, in which network connections to other machines are supported, the third
approach is needed to protect user information and resources  housed at the server. Kerberos supports this third approach. Kerberos

assumes a distributed client/server architecture and employs one or more Kerberos servers to provide an authentication service.

31 However, even a closed environment faces the threat of attack by a disgruntled employee.
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The first published report on Kerberos [STEI8]] listed the following requirements:

® Sccure: A network eavesdropper should not be able to obtain the necessary information to impersonate a user. More
generally, Kerberos should be strong enough that a potential opponent does not find it to be the weak link.

® Reliable: For all services that rely on Kerberos for access control, lack of availability of the Kerberos service means lack of
availability of the supported services. Hence, Kerberos should be highly reliable and should employ a distributed server
architecture, with one system able to back up another.

® Transparent: ldeally, the user should not be aware that authentication is taking place, beyond the requirement to enter a
password.

® Scalable: The system should be capable of supporting large numbers of clients and servers. This suggests a modular,
distributed architecture.

To support these requirements, the overall scheme of Kerberos is that of a trusted third-party authentication service that uses a protocol
based on that proposed by Needham and Schroeder [NEED7], which was discussed inChapter 4. It is trusted in the sense that clients
and servers trust Kerberos to mediate their mutual authentication. Asing the Kerberos protocol is well designed, then the

authentication service is secure if the Kerberos server itself is secure.

[l Remember that the security of the Kerberos server should not automatically be assumed but must be guarded
carefully (e.g., in a locked room). It is well to remember the fate of the Greek Kerberos, whom Hercules was ordered
by Eurystheus to capture as his Twelfth Labor: "Hercules found the great dog on its chain and seized it by the
throat. At once the three heads tried to attack, and Kerberos lashed about with his powerful tail. Hercules hung on
grimly, and Kerberos relaxed into unconsciousness. Eurystheus may have been surprised to see Hercules
alivewhen he saw the three slavering heads and the huge dog they belonged to he was frightened out of his wits,
and leapt back into the safety of his great bronze jar." From The Hamlyn Concise Dictionary of Greek and Roman
Mythology, by Michael Stapleton, Hamlyn, 1982.

Kerberos Version 4

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide the authentication service. Viewing the protocol as a



whole, it is difficult to see the need for the many elements contained therein. Therefore, we adopt a strategy used by Bill Bryant of Project
Athena [BRYA84] and build up to the full protocol by looking first at several hypothetical dialogues. Each successive dialogue adds
additional complexity to counter security vulnerabilities revealed in the preceding dialogue.

After examining the protocol, we look at some other aspects of version 4.

A Simple Authentication Dialogue

In an unprotected network environment, any client can apply to any server for service. The obvious security risk is that of impersonation.
An opponent can pretend to be another client and obtain unauthorized privileges on server machines. To counter this threat, servers must
be able to confirm the identities of clients who request service. Each server can be required to undertake this task for each client/server
interaction, but in an open environment, this places a substantial burden on each server.
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An alternative is to use an authentication server (AS) that knows the passwords of all users and stores these in a centralized database. In
addition, the AS shares a unique secret key with eachrver. These keys have been distributed physically or in some other secure
5

manner. Consider the following hypothetical dialogue:

Bl The portion to the left of the colon indicates the sender and receiver; the portion to the right indicates the contents
of the message, the symbol || indicates concatenation.

@c — A IDc||Pc]|IDv
(2) AS — Ticket
3)C —} V: IDC||Ticket

Ticket = E(Ky, [IDC||ADC]|IDV])

where
C = client
AS = authentication server
\% =server
IDC = identifier of user on C
IDV = identifier of V
PC = password of user on C
ADC = network address of C

Ky = secret encryption key shared by AS and V



In this scenario, the user logs on to a workstation and requests access to server V. The client module C in the user's workstation requests
the user's password and then sends a message to the AS that includes the user's ID, the server's ID, and the user's password. The AS
checks its database to see if the user has supplied the proper password for this user ID and whether this user is permitted access to
server V. If both tests are passed, the AS accepts the user as authentic and must now convince the server that this user is authentic. To
do so, the AS creates a ticket that contains the user's ID and network address and the server's ID. This ticket is encrypted using the
secret key shared by the AS and this server. This ticket is then sent back to C. Because the ticket is encrypted, it cannot be altered by C or
by an opponent.

With this ticket, C can now apply to V for service. C sends a message to V containing C's ID and the ticket. V decrypts the ticket and
verifies that the user ID in the ticket is the same as the unencrypted user ID in the message. If these two match, the server considers the
user authenticated and grants the requested service.

Each of the ingredients of message (3) is significant. The ticket is encrypted to prevent alteration or forgery. The server's ID (IDV) is
included in the ticket so that the server can verify that it has decrypted the ticket properly. IDC is included in the ticket to indicate that this
ticket has been issued on behalf of C. Finally, ADC serves to counter the following threat. An opponent could capture the ticket transmitted
in message (2), then use the name IDC and transmit a message of form (3) from another workstation. The server would receive a valid
ticket that matches the user ID and grant access to the user on that other workstation. To prevent this attack, the AS includes in the ticket
the network address from which the original request came. Now the ticket is valid only if it is transmitted from the same workstation that
initially requested the ticket.
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A More Secure Authentication Dialogue

Although the foregoing scenario solves some of the problems of authentication in an open network environment, problems remain. Two in
particular stand out. First, we would like to minimize the number of times that a user has to enter a password. Suppose each ticket can be
used only once. If user C logs on to a workstation in the morning and wishes to check his or her mail at a mail server, C must supply a
password to get a ticket for the mail server. If C wishes to check the mail several times during the day, each attempt requires reentering
the password. We can improve matters by saying that tickets are reusable. For a single logon session, the workstation can store the malil
server ticket after it is received and use it on behalf of the user for multiple accesses to the mail server.

However, under this scheme it remains the case that a user would need a new ticket for every different service. If a user wished to access
a print server, a mail server, a file server, and so on, the first instance of each access would require a new ticket and hence require the
user to enter the password.

The second problem is that the earlier scenario involved a plaintext transmission of the password [message (1)]. An eavesdropper could
capture the password and use any service accessible to the victim.

To solve these additional problems, we introduce a scheme for avoiding plaintext passwords and a new server, known as the
ticket-granting server (TGS). The new but still hypothetical scenario is as follows:

Once per user logon session:

@c — AS: IDC||IDtgs

(2) AS _} C: E(Kc, Ticketigs)
Once per type of service:

®cC - 1cs: IDC||IDV|[Ticketigs

() Tes == c: Tickety



Once per service session:
(5)C == - IDC[Tickety
Tickettgs = E(Ktgs, [IDC||ADC||IDtgs|[TS1]|Lifetime1])

Tickety = E(Ky, IDC||ADC||IDy||TS2||Lifetime2])

The new service, TGS, issues tickets to users who have been authenticated to AS. Thus, the user first requests a ticket-granting ticket
(Tickettgs) from the AS. The client module in the user workstation saves this ticket. Each time the user requires access to a new service,
the client applies to the TGS, using the ticket to authenticate itself. The TGS then grants a ticket for the particular service. The client saves
each service-granting ticket and uses it to authenticate its user to a server each time a particular service is requested. Let us look at the
details of this scheme:
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1. The client requests a ticket-granting ticket on behalf of the user by sending its user's ID and password to the AS, together with
the TGS ID, indicating a request to use the TGS service.

2. The AS responds with a ticket that is encrypted with a key that is derived from the user's password. When this response arrives
at the client, the client prompts the user for his or her password, generates the key, and attempts to decrypt the incoming
message. If the correct password is supplied, the ticket is successfully recovered.

Because only the correct user should know the password, only the correct user can recover the ticket. Thus, we have used the password
to obtain credentials from Kerberos without having to transmit the password in plaintext. The ticket itself consists of the ID and network
address of the user, and the ID of the TGS. This corresponds to the first scenario. The idea is that the client can use this ticket to request
multiple service-granting tickets. So the ticket-granting ticket is to be reusable. However, we do not wish an opponent to be able to capture
the ticket and use it. Consider the following scenario: An opponent captures the login ticket and waits until the user has logged off his or
her workstation. Then the opponent either gains access to that workstation or configures his workstation with the same network address as
that of the victim. The opponent would be able to reuse the ticket to spoof the TGS. To counter this, the ticket includes a timestamp,
indicating the date and time at which the ticket was issued, and a lifetime, indicating the length of time for which the ticket is valid (e.qg.,
eight hours). Thus, the client now has a reusable ticket and need not bother the user for a password for each new service request. Finally,
note that the ticket-granting ticket is encrypted with a secret key known only to the AS and the TGS. This prevents alteration of the ticket.
The ticket is reencrypted with a key based on the user's password. This assures that the ticket can be recovered only by the correct user,
providing the authentication.

Now that the client has a ticket-granting ticket, access to any server can be obtained with steps 3 and 4:

1. The client requests a service-granting ticket on behalf of the user. For this purpose, the client transmits a message to the TGS
containing the user's ID, the ID of the desired service, and the ticket-granting ticket.

2. The TGS decrypts the incoming ticket and verifies the success of the decryption by the presence of its ID. It checks to make sure
that the lifetime has not expired. Then it compares the user ID and network address with the incoming information to
authenticate the user. If the user is permitted access to the server V, the TGS issues a ticket to grant access to the requested
service.

The service-granting ticket has the same structure as the ticket-granting ticket. Indeed, because the TGS is a server, we would expect that
the same elements are needed to authenticate a client to the TGS and to authenticate a client to an application server. Again, the ticket
contains a timestamp and lifetime. If the user wants access to the same service at a later time, the client can simply use the previously
acquired service-granting ticket and need not bother the user for a password. Note that the ticket is encrypted with a secret key (Ky)



known only to the TGS and the server, preventing alteration.
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Finally, with a particular service-granting ticket, the client can gain access to the corresponding service with step 5:

5. The client requests access to a service on behalf of the user. For this purpose, the client transmits a message to the server
containing the user's ID and the service-granting ticket. The server authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password query per user session and protection of the user password.

The Version 4 Authentication Dialogue

Although the foregoing scenario enhances security compared to the first attempt, two additional problems remain. The heart of the first
problem is the lifetime associated with the ticket-granting ticket. If this lifetime is very short (e.g., minutes), then the user will be repeatedly
asked for a password. If the lifetime is long (e.g., hours), then an opponent has a greater opportunity for replay. An opponent could
eavesdrop on the network and capture a copy of the ticket-granting ticket and then wait for the legitimate user to log out. Then the
opponent could forge the legitimate user's network address and send the message of step (3) to the TGS. This would give the opponent
unlimited access to the resources and files available to the legitimate user.

Similarly, if an opponent captures a service-granting ticket and uses it before it expires, the opponent has access to the corresponding
service.

Thus, we arrive at an additional requirement. A network service (the TGS or an application service) must be able to prove that the person
using a ticket is the same person to whom that ticket was issued.

The second problem is that there may be a requirement for servers to authenticate themselves to users. Without such authentication, an
opponent could sabotage the configuration so that messages to a server were directed to another location. The false server would then be
in a position to act as a real server and capture any information from the user and deny the true service to the user.

We examine these problems in turn and refer to [Table 14.1], which shows the actual Kerberos protocol.



Table 14.1. Summary of Kerberos Version 4 Message Exchanges
(This item is displayed on page 408 in the print version)

@c —} AS ID¢||IDtgs||TS1

(2) AS === ¢ E(Kc.[Ke,tgsllIDgs|ITS2l|Lifetimez| [ Ticketrgs])

Ticketigs = E(Kigs, [Ke, gs||IDcl|ADc|[IDtgs|| TS2] Lifetimez])

(a) Authentication Service Exchange to obtain ticket-granting ticket
(3)C ===F TGs  IDv|[Ticketrgs|/Authenticatorc

(4) TGS ™==F ¢ E(Kc,igs, [KcvI[IDv|[TS4][Tickety))

Tickettgs = E(Ktgs, [Kc,tgsl|IDC||ADC]|IDtgs|| TS2||Lifetime2])
Tickety = E(Kv, [Kc,vI[IDCIIADC]|IDv||TS4||Lifetime4])

Authenticatorc = E(Kc,tgs, [IDC||ADCI|TS3])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5)C é vV Tickety||Authenticatorc

6)V —} C E(Kc,v, [TS5 + 1]) (for mutual authentication)

Tickety = E(Kv, [Ke,v||IDc||ADc]|IDv||TS4]|Lifetimea])

Authenticatorc = E(Kc,v,[IDc||ADC||TS5])

(c) Client/Server Authentication Exchange to obtain service

First, consider the problem of captured ticket-granting tickets and the need to determine that the ticket presenter is the same as the client
for whom the ticket was issued. The threat is that an opponent will steal the ticket and use it before it expires. To get around this problem,
let us have the AS provide both the client and the TGS with a secret piece of information in a secure manner. Then the client can prove its
identity to the TGS by revealing the secret information, again in a secure manner. An efficient way of accomplishing this is to use an
encryption key as the secure information; this is referred to as a session key in Kerberos.

shows the technique for distributing the session key. As before, the client sends a message to the AS requesting access to
the TGS. The AS responds with a message, encrypted with a key derived from the user's password (Kc) that contains the ticket. The
encrypted message also contains a copy of the session key, Kc,tgs, where the subscripts indicate that this is a session key for C and TGS.
Because this session key is inside the message encrypted withKc, only the user's client can read it. The same session key is included in
the ticket, which can be read only by the TGS. Thus, the session key has been securely delivered to both C and the TGS.
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Note that several additional pieces of information have been added to this first phase of the dialogue. Message (1) includes a timestamp,
so that the AS knows that the message is timely. Message (2) includes several elements of the ticket in a form accessible to C. This
enables C to confirm that this ticket is for the TGS and to learn its expiration time.

Armed with the ticket and the session key, C is ready to approach the TGS. As before, C sends the TGS a message that includes the
ticket plus the ID of the requested service (message (3) in [Table 14.11). In addition, C transmits an authenticator, which includes the ID

and address of C's user and a timestamp. Unlike the ticket, which is reusable, the authenticator is intended for use only once and has a
very short lifetime. The TGS can decrypt the ticket with the key that it shares with the AS. This ticket indicates that user C has been
provided with the session key Kc,tgs. In effect, the ticket says, "Anyone who uses Kc,tgs must be C." The TGS uses the session key to
decrypt the authenticator. The TGS can then check the name and address from the authenticator with that of the ticket and with the
network address of the incoming message. If all match, then the TGS is assured that the sender of the ticket is indeed the ticket's real
owner. In effect, the authenticator says, "At time TS3, | hereby useKc,tgs." Note that the ticket does not prove anyone's identity but is a
way to distribute keys securely. It is the authenticator that proves the client's identity. Because the authenticator can be used only once
and has a short lifetime, the threat of an opponent stealing both the ticket and the authenticator for presentation later is countered.
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The reply from the TGS, in message (4), follows the form of message (2). The message is encrypted with the session key shared by the
TGS and C and includes a session key to be shared between C and the server V, the ID of V, and the timestamp of the ticket. The ticket
itself includes the same session key.

C now has a reusable service-granting ticket for V. When C presents this ticket, as shown in message (5), it also sends an authenticator.
The server can decrypt the ticket, recover the session key, and decrypt the authenticator.

If mutual authentication is required, the server can reply as shown in message (6) of . The server returns the value of the
timestamp from the authenticator, incremented by 1, and encrypted in the session key. C can decrypt this message to recover the
incremented timestamp. Because the message was encrypted by the session key, C is assured that it could have been created only by V.
The contents of the message assure C that this is not a replay of an old reply.

Finally, at the conclusion of this process, the client and server share a secret key. This key can be used to encrypt future messages
between the two or to exchange a new random session key for that purpose.

able 14.94 summarizes the justification for each of the elements in the Kerberos protocol, an provides a simplified overview of

the action.
Table 14.2. Rationale for the Elements of the Kerberos Version 4 Protocol
(This item is displayed on pages 410 - 411 in the print version)
Message (1) Client requests ticket-granting ticket
Tells AS identity of user from this client
IDC
Tells AS that user requests access to TGS
IDtgs
Allows AS to verify that client's clock is synchronized with that of AS
TS1
Message (2) AS returns ticket-granting ticket

Encryption is based on user's password, enabling AS and client to verify password, and
Ke protecting contents of message (2)



Ke,tgs

IDtgs

TS2

Lifetime2

Tickettgs

Message (3)

IDvV

Tickettgs

Authenticatorc

Message (4)

Ke,tgs

Ke,v

IDv

TS4

Tickety

Tickettgs

Copy of session key accessible to client created by AS to permit secure exchange between

client and TGS without requiring them to share a permanent key

Confirms that this ticket is for the TGS

Informs client of time this ticket was issued

Informs client of the lifetime of this ticket

Ticket to be used by client to access TGS

(a) Authentication Service Exchange

Client requests service-granting ticket

Tells TGS that user requests access to server V

Assures TGS that this user has been authenticated by AS

Generated by client to validate ticket

TGS returns service-granting ticket

Key shared only by C and TGS protects contents of message (4)

Copy of session key accessible to client created by TGS to permit secure exchange between

client and server without requiring them to share a permanent key

Confirms that this ticket is for server V

Informs client of time this ticket was issued

Ticket to be used by client to access server V

Reusable so that user does not have to reenter password



Ticket is encrypted with key known only to AS and TGS, to prevent tampering

Ktgs
Copy of session key accessible to TGS used to decrypt authenticator, thereby authenticating
Ke tgs ticket
Indicates the rightful owner of this ticket
IDC
Prevents use of ticket from workstation other than one that initially requested the ticket
ADC
Assures server that it has decrypted ticket properly
IDtgs
Informs TGS of time this ticket was issued
TS2
Prevents replay after ticket has expired
Lifetime2
Assures TGS that the ticket presenter is the same as the client for whom the ticket was issued
Authenticatorc has very short lifetime to prevent replay
Authenticator is encrypted with key known only to client and TGS, to prevent tamperig
Ke,tgs
Must match ID in ticket to authenticate ticket
IDc
Must match address in ticket to authenticate ticket
ADc
Informs TGS of time this authenticator was generated
TS3
(b) Ticket-Granting Service Exchange
Message (5) Client requests service
Assures server that this user has been authenticated by AS
Tickety
Generated by client to validate ticket
Authenticatorc

Message (6) Optional authentication of server to client



Ke,v

TS5+1

Tickety

Ky

Ke,v

IDC

ADc

IDv

TS4

Lifetime4

Authenticatorc

Ke,v

IDC

ADc

TS5

Assures C that this message is from V

Assures C that this is not a replay of an old reply

Reusable so that client does not need to request a new ticket from TGS for each access to the

same server

Ticket is encrypted with key known only to TGS and server, to prevent tampering

Copy of session key accessible to client; used to decrypt authenticator, thereby authenticating

ticket

Indicates the rightful owner of this ticket

Prevents use of ticket from workstation other than one that initially requested the ticket

Assures server that it has decrypted ticket properly

Informs server of time this ticket was issued

Prevents replay after ticket has expired

Assures server that the ticket presenter is the same as the client for whom the ticket was issued;

has very short lifetime to prevent replay

Authenticator is encrypted with key known only to client and server, to prevent tampering

Must match ID in ticket to authenticate ticket

Must match address in ticket to authenticate ticket

Informs server of time this authenticator was generated

(c) Client/Server Authentication Exchange



Figure 14.1. Overview of Kerberos
(This item is displayed on page 412 in the print version)
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Kerberos Realms and Multiple Kerberi

A full-service Kerberos environment consisting of a Kerberos server, a number of clients, and a number of application servers requires the
following:

1. The Kerberos server must have the user ID and hashed passwords of all participating users in its database. All users are
registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are registered with the Kerberos server.

Such an environment is referred to as a Kerberos realm. The concept of realm can be explained as follows. A Kerberos realm is a set of
managed nodes that share the same Kerberos database. The Kerberos database resides on the Kerberos master computer system, which



should be kept in a physically secure room. A read-only copy of the Kerberos database might also reside on other Kerberos computer
systems. However, all changes to the database must be made on the master computer system. Changing or accessing the contents of a
Kerberos database requires the Kerberos master password. A related concept is that of a Kerberos principal, which is a service or user
that is known to the Kerberos system. Each Kerberos principal is identified by its principal name. Principal names consist of three parts: a
service or user name, an instance name, and a realm name

Networks of clients and servers under different administrative organizations typically constitute different realms. That is, it generally is not
practical, or does not conform to administrative policy, to have users and servers in one administrative domain registered with a Kerberos
server elsewhere. However, users in one realm may need access to servers in other realms, and some servers may be willing to provide
service to users from other realms, provided that those users are authenticated.
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Kerberos provides a mechanism for supporting such interrealm authentication. For two realms to support interrealm authentication, a third
requirement is added:

3. The Kerberos server in each interoperating realm shares a secret key with the server in the other realm. The two Kerberos
servers are registered with each other.

The scheme requires that the Kerberos server in one realm trust the Kerberos server in the other realm to authenticate its users.
Furthermore, the participating servers in the second realm must also be willing to trust the Kerberos server in the first realm.
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With these ground rules in place, we can describe the mechanism as follows : A user wishing service on a server in another
realm needs a ticket for that server. The user's client follows the usual procedures to gain access to the local TGS and then requests a
ticket-granting ticket for a remote TGS (TGS in another realm). The client can then apply to the remote TGS for a service-granting ticket
for the desired server in the realm of the remote TGS.

Figure 14.2. Request for Service in Another Realm
(This item is displayed on page 413 in the print version)
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The details of the exchanges illustrated in are as follows (compare[lable 14.1)):

(6) TGSrem e
(7 C a Vrem:

IDc||IDtgsl|TS1

E(Kc, [Kc,tgsl|IDtgs|[TS2||Lifetime2|[Ticketigs])
IDtgsrem||Ticketigs||Authenticatorc

E(Kc,tgs, [Kc,tgsrem||IDtgsrem||TS4|| Ticketigsrem])
IDvrem||Tickettgsrem||Authenticatorc

E(Kc,tgsrem, [Kc,vrem||IDvrem||TS6||Ticketyrem])

Ticketyrem||Authenticatorc
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The ticket presented to the remote server (Vrem) indicates the realm in which the user was originally authenticated. The server chooses

whether to honor the remote request.

One problem presented by the foregoing approach is that it does not scale well to many realms. If there are N realms, then there must be



N(N 1)/2 secure key exchanges so that each Kerberos realm can interoperate with all other Kerberos realms.

Kerberos Version 5

Kerberos Version 5 is specified in RFC 1510 and provides a number of improvements over version 4 [KOHL94]. To begin, we provide an
overview of the changes from version 4 to version 5 and then look at the version 5 protocol.
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Differences between Versions 4 and 5

Version 5 is intended to address the limitations ogersion 4 in two areas: environmental shortcomings and technical deficiencies. Let us

briefly summarize the improvements in each area.

6] The following discussion follows the presentation in KOHL94]].

Kerberos Version 4 was developed for use within the Project Athena environment and, accordingly, did not fully address the need to be of
general purpose. This led to the following environmental shortcomings:

1. Encryption system dependence: Version 4 requires the use of DES. Export restriction on DES as well as doubts about the
strength of DES were thus of concern. In version 5, ciphertext is tagged with an encryption type identifier so that any encryption
technique may be used. Encryption keys are tagged with a type and a length, allowing the same key to be used in different
algorithms and allowing the specification of different variations on a given algorithm.

2. Internet protocol dependence: Version 4 requires the use of Internet Protocol (IP) addresses. Other address types, such as
the ISO network address, are not accommodated. Version 5 network addresses are tagged with type and length, allowing any
network address type to be used.

3. Message byte ordering: In version 4, the sender of a message employs a byte ordering of its own choosing and tags the
message to indicate least significant byte in lowest address or most significant byte in lowest address. This techniques works
but does not follow established conventions. In version 5, all message structures are defined using Abstract Syntax Notation
One (ASN.1) and Basic Encoding Rules (BER), which provide an unambiguous byte ordering.

4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity in units of five minutes. Thus, the maximum

lifetime that can be expressed is 28 x 5= 1280 minutes, or a little over 21 hours. This may be inadequate for some applications
(e.g., along-running simulation that requires valid Kerberos credentials throughout execution). In version 5, tickets include an
explicit start time and end time, allowing tickets with arbitrary lifetimes.

5. Authentication forwarding: Version 4 does not allow credentials issued to one client to be forwarded to some other host and
used by some other client. This capability would enable a client to access a server and have that server access another server
on behalf of the client. For example, a client issues a request to a print server that then accesses the client's file from a file
server, using the client's credentials for access. Version 5 provides this capability.

6. Interrealm authentication: In version 4, interoperability among N realms requires on the order ofN2 Kerberos-to-Kerberos
relationships, as described earlier. Version 5 supports a method that requires fewer relationships, as described shortly.

Apart from these environmental limitations, there are technical deficiencies in the version 4 protocol itself. Most of these deficiencies
were documented  in [BELLI(], and version 5 attempts to address these. The deficiencies are the following:
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1. Double encryption: Note in[Table 14.1f [messages (2) and (4)] that tickets provided to clients are encrypted twice, once with
the secret key of the target server and then again with a secret key known to the client. The second encryption is not necessary
and is computationally wasteful.

2. PCBC encryptioEncryption in version 4 makes use of a nonstandard mode of DES known aspropagating cipher block
7

chaining (PCBC).— It has been demonstrated that this mode is vulnerable to an attack involving the interchange of ciphertext
blocks . PCBC was intended to provide an integrity check as part of the encryption operation. Version 5 provides
explicit integrity mechanisms, allowing the standard CBC mode to be used for encryption. In particular, a checksum or hash
code is attached to the message prior to encryption using CBC.

"I This is described in .

3. Session keys: Each ticket includes a session key that is used by the client to encrypt the authenticator sent to the service
associated with that ticket. In addition, the session key may subsequently be used by the client and the server to protect
messages passed during that session. However, because the same ticket may be used repeatedly to gain service from a
particular server, there is the risk that an opponent will replay messages from an old session to the client or the server. In
version 5, it is possible for a client and server to negotiate a subsession key, which is to be used only for that one connection. A
new access by the client would result in the use of a new subsession key.

4. Password attacks: Both versions are vulnerable to a passw attack. The message from the AS to the client includes

material encrypted with a key based on the client's password.= An opponent can capture this message and attempt to decrypt

it by trying various passwords. If the result of a test decryption is of the proper form, then the opponent has discovered the

client's password and may subsequently use it to gain authentication credentials from Kerberos. This is the same type of
password attack described in , with the same kinds of countermeasures being applicable. Version 5 does provide a

mechanism known as preauthentication, which should make password attacks more difficult, but it does not prevent them.

(8l describes the mapping of passwords to encryption keys.

The Version 5 Authentication Dialogue

able 14.3 summarizes the basic version 5 dialogue. This is best explained by comparison with version 4[{able 14.1).



Table 14.3. Summary of Kerberos Version 5 Message Exchanges
(This item is displayed on page 416 in the print version)

ac ﬁ AS Options||ID¢||Realmc||IDtgs||Times||Nonce1

(2) AS —_— Realmc||IDC||Tickettgs||E(Kc, [Kc,tgs|[Times||Nonce1||Realmtgs||IDigs])

Tickettgs = E(Ktgs, [Flags||Kc,tgs||Realmc|[IDc||ADc||Times])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C === TGs Options||IDy||Times||||[Nonce2|[Tickettgs||Authenticatorc

(4) TGS —} C

Realmc|[ID¢||Ticketv||[E(Kc tgs, [Ke,vl|Times||Nonce2||Realmy]|IDy])

Tickettgs = E(Ktgs, [Flags||KC,tgs||IRealmc||IDC||ADC||Times])

Tickety = E(Kv, [Flags||Kc,v||Realmc||IDC||ADc||Times])

Authenticatorc = E(Kc,tgs, [IDC||Realmc||TS1])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5)C é \Vi Options||Tickety||Authenticatorc

6) Vv — EKc MTS2l[Subkey||Seq#]

Tickety = E(Kv, [Flags||Kc,v||Realmc||IDC||ADC||Times])

Authenticatorc = E(Kc,v,[IDC||Realmc||TS2||Subkey||Seq#])

(c) Client/Server Authentication Exchange to obtain service

First, consider the authentication service exchange. Message (1) is a client request for a ticket-granting ticket. As before, it includes the
ID of the user and the TGS. The following new elements are added:

® Realm: Indicates realm of user

® Options: Used to request that certain flags be set in the returned ticket
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® Times: Used by the client to request the following time settings in the ticket:

from: the desired start time for the requested ticket



till: the requested expiration time for the requested ticket
rtime: requested renew-till time

® : A random value to be repeated in message (2) to assure that the response is fresh and has not been replayed by an
opponent

Message (2) returns a ticket-granting ticket, identifying information for the client, and a block encrypted using the encryption key based on
the user's password. This block includes the session key to be used between the client and the TGS, times specified in message (1), the
nonce from message (1), and TGS identifying information. The ticket itself includes the session key, identifying information for the client,
the requested time values, and flags that reflect the status of this ticket and the requested options. These flags introduce significant new
functionality to version 5. For now, we defer a discussion of these flags and concentrate on the overall structure of the version 5 protocol.

Let us now compare the ticket-granting service exchange for versions 4 and 5. We see that message (3) for both versions includes an
authenticator, a ticket, and the name of the requested service. In addition, version 5 includes requested times and options for the ticket and
a nonce, all with functions similar to those of message (1). The authenticator itself is essentially the same as the one used in version 4.

Message (4) has the same structure as message (2), returning a ticket plus information needed by the client, the latter encrypted with the
session key now shared by the client and the TGS.
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Finally, for theclient/server authentication exchange, several new features appear in version 5. In message (5), the client may request
as an option that mutual authentication is required. The authenticator includes several new fields as follows:

® Subkey: The client's choice for an encryption key to be used to protect this specific application session. If this field is omitted,
the session key from the ticket (Kc,v) is used.

® Sequence number: An optional field that specifies the starting sequence number to be used by the server for messages sent
to the client during this session. Messages may be sequence numbered to detect replays.

If mutual authentication is required, the server responds with message (6). This message includes the timestamp from the authenticator.
Note that in version 4, the timestamp was incremented by one. This is not necessary in version 5 because the nature of the format of
messages is such that it is not possible for an opponent to create message (6) without knowledge of the appropriate encryption keys. The
subkey field, if present, overrides the subkey field, if present, in message (5). The optional sequence number field specifies the starting
sequence number to be used by the client.

Ticket Flags

The flags field included in tickets in version 5 supports expanded functionality compared to that available in version 4. [Table 14.4
summarizes the flags that may be included in a ticket.

Table 14.4. Kerberos Version 5 Flags

INITIAL This ticket was issued using the AS protocol and not issued based on a ticket-granting ticket.

PRE-AUTHENT During initial authentication, the client was authenticated by the KDC before a ticket was
issued.

HW-AUTHENT The protocol employed for initial authentication required the use of hardware expected to be

possessed solely by the named client.



RENEWABLE Tells TGS that this ticket can be used to obtain a replacement ticket that expires at a later date.
MAY-POSTDATE Tells TGS that a postdated ticket may be issued based on this ticket-granting ticket.

POSTDATED Indicates that this ticket has been postdated; the end server can check the authtime field to
see when the original authentication occurred.

INVALID This ticket is invalid and must be validated by the KDC before use.

PROXIABLE Tells TGS that a new service-granting ticket with a different network address may be issued
based on the presented ticket.

PROXY Indicates that this ticket is a proxy.

FORWARDABLE Tells TGS that a new ticket-granting ticket with a different network address may be issued
based on this ticket-granting ticket.

FORWARDED Indicates that this ticket has either been forwarded or was issued based on authentication
involving a forwarded ticket-granting ticket.

The INITIAL flag indicates that this ticket was issued by the AS, not by the TGS. When a client requests a service-granting ticket from the
TGS, it presents a ticket-granting ticket obtained from the AS. In version 4, this was the only way to obtain a service-granting ticket.
Version 5 provides the additional capability that the client can get a service-granting ticket directly from the AS. The utility of this is as
follows: A server, such as a password-changing server, may wish to know that the client's password was recently tested.
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The PRE-AUTHENT flag, if set, indicates that when the AS received the initial request [message (1)], it authenticated the client before
issuing a ticket. The exact form of this preauthentication is left unspecified. As an example, the MIT implementation of version 5 has
encrypted timestamp preauthentication, enabled by default. When a user wants to get a ticket, it has to send to the AS a preauthentication
block containing a random confounder, a version number, and a timestamp, encrypted in the client's password-based key. The AS
decrypts the block and will not send a ticket-granting ticket back unless the timestamp in the preauthentication block is within the allowable
time skew (time interval to account for clock drift and network delays). Another possibility is the use of a smart card that generates
continually changing passwords that are included in the preauthenticated messages. The passwords generated by the card can be based
on a user's password but be transformed by the card so that, in effect, arbitrary passwords are used. This prevents an attack based on
easily guessed passwords. If a smart card or similar device was used, this is indicated by the HW-AUTHENT flag.

When a ticket has a long lifetime, there is the potential for it to be stolen and used by an opponent for a considerable period. If a short
lifetime is used to lessen the threat, then overhead is involved in acquiring new tickets. In the case of a ticket-granting ticket, the client
would either have to store the user's secret key, which is clearly risky, or repeatedly ask the user for a password. A compromise scheme is
the use of renewable tickets. A ticket with the RENEWABLE flag set includes two expiration times: one for this specific ticket and one that
is the latest permissible value for an expiration time. A client can have the ticket renewed by presenting it to the TGS with a requested new
expiration time. If the new time is within the limit of the latest permissible value, the TGS can issue a new ticket with a new session time
and a later specific expiration time. The advantage of this mechanism is that the TGS may refuse to renew a ticket reported as stolen.

A client may request that the AS provide a ticket-granting ticket with the MAY-POSTDATE flag set. The client can then use this ticket to
request a ticket that is flagged as POSTDATED and INVALID from the TGS. Subsequently, the client may submit the postdated ticket for
validation. This scheme can be useful for running a long batch job on a server that requires a ticket periodically. The client can obtain a
number of tickets for this session at once, with spread-out time values. All but the first ticket are initially invalid. When the execution
reaches a point in time when a new ticket is required, the client can get the appropriate ticket validated. With this approach, the client does
not have to repeatedly use its ticket-granting ticket to obtain a service-granting ticket.

In version 5 it is possible for a server to act as a proxy on behalf of a client, in effect adopting the credentials and privileges of t